23 resultados para Spatial conditional autoregressive model
Resumo:
We examine the relationship between the risk premium on the S&P 500 index return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean EGARCH - model in which the conditional variance process is EGARCH while the conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500 excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic. Moreover, we find considerable persistence in the conditional variance as well as a leverage effect, as documented by others. Moreover, the shape of these relationships seems to be relatively stable over time.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
Affiliation: Pascal Michel : Département de pathologie et microbiologie, Faculté de médecine vétérinaire
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
Fréquemment, des usagers se retrouvent confrontés à des espaces-transitoires tels que les couloirs de gares. Ces derniers présentent souvent des contraintes temporelles et spatiales qu’il serait possible de transformer en outil optimalisant l’usage. Nous avons voulu vérifier cette hypothèse en observant le degré d’adéquation entre l’offre (les aménagements) et la demande (les usages réels) dans le cas précis de la gare du midi à Bruxelles, Belgique. Nous avons récolté des indices spatiaux, temporels et comportementaux qui nous ont permis d’identifier les conditions de l’usage et, au moyen d’observations directes, de comprendre les usages réellement pratiqués. Afin de documenter le rapport entre usager et espace-temps, nous avons établit une typologie des usages qui met en évidence des figures d’interactions possibles entre ces deux composantes. Nos résultats nous ont permis d’élaborer une conclusion sous la forme d’un modèle nommé « triangle des interrelations » dans le but d’offrir un outil permettant aux professionnels d’anticiper au mieux l’impact des aménagements.
Resumo:
L'objectif du présent mémoire vise à présenter des modèles de séries chronologiques multivariés impliquant des vecteurs aléatoires dont chaque composante est non-négative. Nous considérons les modèles vMEM (modèles vectoriels et multiplicatifs avec erreurs non-négatives) présentés par Cipollini, Engle et Gallo (2006) et Cipollini et Gallo (2010). Ces modèles représentent une généralisation au cas multivarié des modèles MEM introduits par Engle (2002). Ces modèles trouvent notamment des applications avec les séries chronologiques financières. Les modèles vMEM permettent de modéliser des séries chronologiques impliquant des volumes d'actif, des durées, des variances conditionnelles, pour ne citer que ces applications. Il est également possible de faire une modélisation conjointe et d'étudier les dynamiques présentes entre les séries chronologiques formant le système étudié. Afin de modéliser des séries chronologiques multivariées à composantes non-négatives, plusieurs spécifications du terme d'erreur vectoriel ont été proposées dans la littérature. Une première approche consiste à considérer l'utilisation de vecteurs aléatoires dont la distribution du terme d'erreur est telle que chaque composante est non-négative. Cependant, trouver une distribution multivariée suffisamment souple définie sur le support positif est plutôt difficile, au moins avec les applications citées précédemment. Comme indiqué par Cipollini, Engle et Gallo (2006), un candidat possible est une distribution gamma multivariée, qui impose cependant des restrictions sévères sur les corrélations contemporaines entre les variables. Compte tenu que les possibilités sont limitées, une approche possible est d'utiliser la théorie des copules. Ainsi, selon cette approche, des distributions marginales (ou marges) peuvent être spécifiées, dont les distributions en cause ont des supports non-négatifs, et une fonction de copule permet de tenir compte de la dépendance entre les composantes. Une technique d'estimation possible est la méthode du maximum de vraisemblance. Une approche alternative est la méthode des moments généralisés (GMM). Cette dernière méthode présente l'avantage d'être semi-paramétrique dans le sens que contrairement à l'approche imposant une loi multivariée, il n'est pas nécessaire de spécifier une distribution multivariée pour le terme d'erreur. De manière générale, l'estimation des modèles vMEM est compliquée. Les algorithmes existants doivent tenir compte du grand nombre de paramètres et de la nature élaborée de la fonction de vraisemblance. Dans le cas de l'estimation par la méthode GMM, le système à résoudre nécessite également l'utilisation de solveurs pour systèmes non-linéaires. Dans ce mémoire, beaucoup d'énergies ont été consacrées à l'élaboration de code informatique (dans le langage R) pour estimer les différents paramètres du modèle. Dans le premier chapitre, nous définissons les processus stationnaires, les processus autorégressifs, les processus autorégressifs conditionnellement hétéroscédastiques (ARCH) et les processus ARCH généralisés (GARCH). Nous présentons aussi les modèles de durées ACD et les modèles MEM. Dans le deuxième chapitre, nous présentons la théorie des copules nécessaire pour notre travail, dans le cadre des modèles vectoriels et multiplicatifs avec erreurs non-négatives vMEM. Nous discutons également des méthodes possibles d'estimation. Dans le troisième chapitre, nous discutons les résultats des simulations pour plusieurs méthodes d'estimation. Dans le dernier chapitre, des applications sur des séries financières sont présentées. Le code R est fourni dans une annexe. Une conclusion complète ce mémoire.
Resumo:
L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.
Resumo:
Les questions abordées dans les deux premiers articles de ma thèse cherchent à comprendre les facteurs économiques qui affectent la structure à terme des taux d'intérêt et la prime de risque. Je construis des modèles non linéaires d'équilibre général en y intégrant des obligations de différentes échéances. Spécifiquement, le premier article a pour objectif de comprendre la relation entre les facteurs macroéconomiques et le niveau de prime de risque dans un cadre Néo-keynésien d'équilibre général avec incertitude. L'incertitude dans le modèle provient de trois sources : les chocs de productivité, les chocs monétaires et les chocs de préférences. Le modèle comporte deux types de rigidités réelles à savoir la formation des habitudes dans les préférences et les coûts d'ajustement du stock de capital. Le modèle est résolu par la méthode des perturbations à l'ordre deux et calibré à l'économie américaine. Puisque la prime de risque est par nature une compensation pour le risque, l'approximation d'ordre deux implique que la prime de risque est une combinaison linéaire des volatilités des trois chocs. Les résultats montrent qu'avec les paramètres calibrés, les chocs réels (productivité et préférences) jouent un rôle plus important dans la détermination du niveau de la prime de risque relativement aux chocs monétaires. Je montre que contrairement aux travaux précédents (dans lesquels le capital de production est fixe), l'effet du paramètre de la formation des habitudes sur la prime de risque dépend du degré des coûts d'ajustement du capital. Lorsque les coûts d'ajustement du capital sont élevés au point que le stock de capital est fixe à l'équilibre, une augmentation du paramètre de formation des habitudes entraine une augmentation de la prime de risque. Par contre, lorsque les agents peuvent librement ajuster le stock de capital sans coûts, l'effet du paramètre de la formation des habitudes sur la prime de risque est négligeable. Ce résultat s'explique par le fait que lorsque le stock de capital peut être ajusté sans coûts, cela ouvre un canal additionnel de lissage de consommation pour les agents. Par conséquent, l'effet de la formation des habitudes sur la prime de risque est amoindri. En outre, les résultats montrent que la façon dont la banque centrale conduit sa politique monétaire a un effet sur la prime de risque. Plus la banque centrale est agressive vis-à-vis de l'inflation, plus la prime de risque diminue et vice versa. Cela est due au fait que lorsque la banque centrale combat l'inflation cela entraine une baisse de la variance de l'inflation. Par suite, la prime de risque due au risque d'inflation diminue. Dans le deuxième article, je fais une extension du premier article en utilisant des préférences récursives de type Epstein -- Zin et en permettant aux volatilités conditionnelles des chocs de varier avec le temps. L'emploi de ce cadre est motivé par deux raisons. D'abord des études récentes (Doh, 2010, Rudebusch and Swanson, 2012) ont montré que ces préférences sont appropriées pour l'analyse du prix des actifs dans les modèles d'équilibre général. Ensuite, l'hétéroscedasticité est une caractéristique courante des données économiques et financières. Cela implique que contrairement au premier article, l'incertitude varie dans le temps. Le cadre dans cet article est donc plus général et plus réaliste que celui du premier article. L'objectif principal de cet article est d'examiner l'impact des chocs de volatilités conditionnelles sur le niveau et la dynamique des taux d'intérêt et de la prime de risque. Puisque la prime de risque est constante a l'approximation d'ordre deux, le modèle est résolu par la méthode des perturbations avec une approximation d'ordre trois. Ainsi on obtient une prime de risque qui varie dans le temps. L'avantage d'introduire des chocs de volatilités conditionnelles est que cela induit des variables d'état supplémentaires qui apportent une contribution additionnelle à la dynamique de la prime de risque. Je montre que l'approximation d'ordre trois implique que les primes de risque ont une représentation de type ARCH-M (Autoregressive Conditional Heteroscedasticty in Mean) comme celui introduit par Engle, Lilien et Robins (1987). La différence est que dans ce modèle les paramètres sont structurels et les volatilités sont des volatilités conditionnelles de chocs économiques et non celles des variables elles-mêmes. J'estime les paramètres du modèle par la méthode des moments simulés (SMM) en utilisant des données de l'économie américaine. Les résultats de l'estimation montrent qu'il y a une évidence de volatilité stochastique dans les trois chocs. De plus, la contribution des volatilités conditionnelles des chocs au niveau et à la dynamique de la prime de risque est significative. En particulier, les effets des volatilités conditionnelles des chocs de productivité et de préférences sont significatifs. La volatilité conditionnelle du choc de productivité contribue positivement aux moyennes et aux écart-types des primes de risque. Ces contributions varient avec la maturité des bonds. La volatilité conditionnelle du choc de préférences quant à elle contribue négativement aux moyennes et positivement aux variances des primes de risque. Quant au choc de volatilité de la politique monétaire, son impact sur les primes de risque est négligeable. Le troisième article (coécrit avec Eric Schaling, Alain Kabundi, révisé et resoumis au journal of Economic Modelling) traite de l'hétérogénéité dans la formation des attentes d'inflation de divers groupes économiques et de leur impact sur la politique monétaire en Afrique du sud. La question principale est d'examiner si différents groupes d'agents économiques forment leurs attentes d'inflation de la même façon et s'ils perçoivent de la même façon la politique monétaire de la banque centrale (South African Reserve Bank). Ainsi on spécifie un modèle de prédiction d'inflation qui nous permet de tester l'arrimage des attentes d'inflation à la bande d'inflation cible (3% - 6%) de la banque centrale. Les données utilisées sont des données d'enquête réalisée par la banque centrale auprès de trois groupes d'agents : les analystes financiers, les firmes et les syndicats. On exploite donc la structure de panel des données pour tester l'hétérogénéité dans les attentes d'inflation et déduire leur perception de la politique monétaire. Les résultats montrent qu'il y a évidence d'hétérogénéité dans la manière dont les différents groupes forment leurs attentes. Les attentes des analystes financiers sont arrimées à la bande d'inflation cible alors que celles des firmes et des syndicats ne sont pas arrimées. En effet, les firmes et les syndicats accordent un poids significatif à l'inflation retardée d'une période et leurs prédictions varient avec l'inflation réalisée (retardée). Ce qui dénote un manque de crédibilité parfaite de la banque centrale au vu de ces agents.