31 resultados para QUANTIZED WEYL ALGEBRA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les problèmes de satisfaction de contraintes, qui consistent à attribuer des valeurs à des variables en respectant un ensemble de contraintes, constituent une large classe de problèmes naturels. Pour étudier la complexité de ces problèmes, il est commode de les voir comme des problèmes d'homomorphismes vers des structures relationnelles. Un axe de recherche actuel est la caractérisation des classes de complexité auxquelles appartient le problème d'homomorphisme, ceci dans la perspective de confirmer des conjectures reliant les propriétés algébriques des structures relationelles à la complexité du problème d'homomorphisme. Cette thèse propose dans un premier temps la caractérisation des digraphes pour lesquels le problème d'homomorphisme avec listes appartient à FO. On montre également que dans le cas du problèmes d'homomorphisme avec listes sur les digraphes télescopiques, les conjectures reliant algèbre et complexité sont confirmées. Dans un deuxième temps, on caractérise les graphes pour lesquels le problème d'homomorphisme avec listes est résoluble par cohérence d'arc. On introduit la notion de polymorphisme monochromatique et on propose un algorithme simple qui résoud le problème d'homomorphisme avec listes si le graphe cible admet un polymorphisme monochromatique TSI d'arité k pour tout k ≥ 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La thèse comporte trois essais en microéconomie appliquée. En utilisant des modèles d’apprentissage (learning) et d’externalité de réseau, elle étudie le comportement des agents économiques dans différentes situations. Le premier essai de la thèse se penche sur la question de l’utilisation des ressources naturelles en situation d’incertitude et d’apprentissage (learning). Plusieurs auteurs ont abordé le sujet, mais ici, nous étudions un modèle d’apprentissage dans lequel les agents qui consomment la ressource ne formulent pas les mêmes croyances a priori. Le deuxième essai aborde le problème générique auquel fait face, par exemple, un fonds de recherche désirant choisir les meilleurs parmi plusieurs chercheurs de différentes générations et de différentes expériences. Le troisième essai étudie un modèle particulier d’organisation d’entreprise dénommé le marketing multiniveau (multi-level marketing). Le premier chapitre est intitulé "Renewable Resource Consumption in a Learning Environment with Heterogeneous beliefs". Nous y avons utilisé un modèle d’apprentissage avec croyances hétérogènes pour étudier l’exploitation d’une ressource naturelle en situation d’incertitude. Il faut distinguer ici deux types d’apprentissage : le adaptive learning et le learning proprement dit. Ces deux termes ont été empruntés à Koulovatianos et al (2009). Nous avons montré que, en comparaison avec le adaptive learning, le learning a un impact négatif sur la consommation totale par tous les exploitants de la ressource. Mais individuellement certains exploitants peuvent consommer plus la ressource en learning qu’en adaptive learning. En effet, en learning, les consommateurs font face à deux types d’incitations à ne pas consommer la ressource (et donc à investir) : l’incitation propre qui a toujours un effet négatif sur la consommation de la ressource et l’incitation hétérogène dont l’effet peut être positif ou négatif. L’effet global du learning sur la consommation individuelle dépend donc du signe et de l’ampleur de l’incitation hétérogène. Par ailleurs, en utilisant les variations absolues et relatives de la consommation suite à un changement des croyances, il ressort que les exploitants ont tendance à converger vers une décision commune. Le second chapitre est intitulé "A Perpetual Search for Talent across Overlapping Generations". Avec un modèle dynamique à générations imbriquées, nous avons étudié iv comment un Fonds de recherche devra procéder pour sélectionner les meilleurs chercheurs à financer. Les chercheurs n’ont pas la même "ancienneté" dans l’activité de recherche. Pour une décision optimale, le Fonds de recherche doit se baser à la fois sur l’ancienneté et les travaux passés des chercheurs ayant soumis une demande de subvention de recherche. Il doit être plus favorable aux jeunes chercheurs quant aux exigences à satisfaire pour être financé. Ce travail est également une contribution à l’analyse des Bandit Problems. Ici, au lieu de tenter de calculer un indice, nous proposons de classer et d’éliminer progressivement les chercheurs en les comparant deux à deux. Le troisième chapitre est intitulé "Paradox about the Multi-Level Marketing (MLM)". Depuis quelques décennies, on rencontre de plus en plus une forme particulière d’entreprises dans lesquelles le produit est commercialisé par le biais de distributeurs. Chaque distributeur peut vendre le produit et/ou recruter d’autres distributeurs pour l’entreprise. Il réalise des profits sur ses propres ventes et reçoit aussi des commissions sur la vente des distributeurs qu’il aura recrutés. Il s’agit du marketing multi-niveau (multi-level marketing, MLM). La structure de ces types d’entreprise est souvent qualifiée par certaines critiques de système pyramidal, d’escroquerie et donc insoutenable. Mais les promoteurs des marketing multi-niveau rejettent ces allégations en avançant que le but des MLMs est de vendre et non de recruter. Les gains et les règles de jeu sont tels que les distributeurs ont plus incitation à vendre le produit qu’à recruter. Toutefois, si cette argumentation des promoteurs de MLMs est valide, un paradoxe apparaît. Pourquoi un distributeur qui désire vraiment vendre le produit et réaliser un gain recruterait-il d’autres individus qui viendront opérer sur le même marché que lui? Comment comprendre le fait qu’un agent puisse recruter des personnes qui pourraient devenir ses concurrents, alors qu’il est déjà établi que tout entrepreneur évite et même combat la concurrence. C’est à ce type de question que s’intéresse ce chapitre. Pour expliquer ce paradoxe, nous avons utilisé la structure intrinsèque des organisations MLM. En réalité, pour être capable de bien vendre, le distributeur devra recruter. Les commissions perçues avec le recrutement donnent un pouvoir de vente en ce sens qu’elles permettent au recruteur d’être capable de proposer un prix compétitif pour le produit qu’il désire vendre. Par ailleurs, les MLMs ont une structure semblable à celle des multi-sided markets au sens de Rochet et Tirole (2003, 2006) et Weyl (2010). Le recrutement a un effet externe sur la vente et la vente a un effet externe sur le recrutement, et tout cela est géré par le promoteur de l’organisation. Ainsi, si le promoteur ne tient pas compte de ces externalités dans la fixation des différentes commissions, les agents peuvent se tourner plus ou moins vers le recrutement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans ce travail, nous définissons des objets composés de disques complexes marqués reliés entre eux par des segments de droite munis d’une longueur. Nous construisons deux séries d’espaces de module de ces objets appelés clus- ters, une qui sera dite non symétrique, la version ⊗, et l’autre qui est dite symétrique, la version •. Cette construction permet des choix de perturba- tions pour deux versions correspondantes des trajectoires de Floer introduites par Cornea et Lalonde ([CL]). Ces choix devraient fournir une nouvelle option pour la description géométrique des structures A∞ et L∞ obstruées étudiées par Fukaya, Oh, Ohta et Ono ([FOOO2],[FOOO]) et Cho ([Cho]). Dans le cas où L ⊂ (M, ω) est une sous-variété lagrangienne Pin± mono- tone avec nombre de Maslov ≥ 2, nous définissons une structure d’algèbre A∞ sur les points critiques d’une fonction de Morse générique sur L. Cette struc- ture est présentée comme une extension du complexe des perles de Oh ([Oh]) muni de son produit quantique, plus récemment étudié par Biran et Cornea ([BC]). Plus généralement, nous décrivons une version géométrique d’une catégorie de Fukaya avec seul objet L qui se veut alternative à la description (relative) hamiltonienne de Seidel ([Sei]). Nous vérifions la fonctorialité de notre construction en définissant des espaces de module de clusters occultés qui servent d’espaces sources pour des morphismes de comparaison.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’introduction aux concepts unificateurs dans l’enseignement des mathématiques privilégie typiquement l’approche axiomatique. Il n’est pas surprenant de constater qu’une telle approche tend à une algorithmisation des tâches pour augmenter l’efficacité de leur résolution et favoriser la transparence du nouveau concept enseigné (Chevallard, 1991). Cette réponse classique fait néanmoins oublier le rôle unificateur du concept et n’encourage pas à l’utilisation de sa puissance. Afin d’améliorer l’apprentissage d’un concept unificateur, ce travail de thèse étudie la pertinence d’une séquence didactique dans la formation d’ingénieurs centrée sur un concept unificateur de l’algèbre linéaire: la transformation linéaire (TL). La notion d’unification et la question du sens de la linéarité sont abordées à travers l’acquisition de compétences en résolution de problèmes. La séquence des problèmes à résoudre a pour objet le processus de construction d’un concept abstrait (la TL) sur un domaine déjà mathématisé, avec l’intention de dégager l’aspect unificateur de la notion formelle (Astolfi y Drouin, 1992). À partir de résultats de travaux en didactique des sciences et des mathématiques (Dupin 1995; Sfard 1991), nous élaborons des situations didactiques sur la base d’éléments de modélisation, en cherchant à articuler deux façons de concevoir l’objet (« procédurale » et « structurale ») de façon à trouver une stratégie de résolution plus sûre, plus économique et réutilisable. En particulier, nous avons cherché à situer la notion dans différents domaines mathématiques où elle est applicable : arithmétique, géométrique, algébrique et analytique. La séquence vise à développer des liens entre différents cadres mathématiques, et entre différentes représentations de la TL dans les différents registres mathématiques, en s’inspirant notamment dans cette démarche du développement historique de la notion. De plus, la séquence didactique vise à maintenir un équilibre entre le côté applicable des tâches à la pratique professionnelle visée, et le côté théorique propice à la structuration des concepts. L’étude a été conduite avec des étudiants chiliens en formation au génie, dans le premier cours d’algèbre linéaire. Nous avons mené une analyse a priori détaillée afin de renforcer la robustesse de la séquence et de préparer à l’analyse des données. Par l’analyse des réponses au questionnaire d’entrée, des productions des équipes et des commentaires reçus en entrevus, nous avons pu identifier les compétences mathématiques et les niveaux d’explicitation (Caron, 2004) mis à contribution dans l’utilisation de la TL. Les résultats obtenus montrent l’émergence du rôle unificateur de la TL, même chez ceux dont les habitudes en résolution de problèmes mathématiques sont marquées par une orientation procédurale, tant dans l’apprentissage que dans l’enseignement. La séquence didactique a montré son efficacité pour la construction progressive chez les étudiants de la notion de transformation linéaire (TL), avec le sens et les propriétés qui lui sont propres : la TL apparaît ainsi comme un moyen économique de résoudre des problèmes extérieurs à l’algèbre linéaire, ce qui permet aux étudiants d’en abstraire les propriétés sous-jacentes. Par ailleurs, nous avons pu observer que certains concepts enseignés auparavant peuvent agir comme obstacles à l’unification visée. Cela peut ramener les étudiants à leur point de départ, et le rôle de la TL se résume dans ces conditions à révéler des connaissances partielles, plutôt qu’à guider la résolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse présente une étude dans divers domaines de l'informatique théorique de modèles de calculs combinant automates finis et contraintes arithmétiques. Nous nous intéressons aux questions de décidabilité, d'expressivité et de clôture, tout en ouvrant l'étude à la complexité, la logique, l'algèbre et aux applications. Cette étude est présentée au travers de quatre articles de recherche. Le premier article, Affine Parikh Automata, poursuit l'étude de Klaedtke et Ruess des automates de Parikh et en définit des généralisations et restrictions. L'automate de Parikh est un point de départ de cette thèse; nous montrons que ce modèle de calcul est équivalent à l'automate contraint que nous définissons comme un automate qui n'accepte un mot que si le nombre de fois que chaque transition est empruntée répond à une contrainte arithmétique. Ce modèle est naturellement étendu à l'automate de Parikh affine qui effectue une opération affine sur un ensemble de registres lors du franchissement d'une transition. Nous étudions aussi l'automate de Parikh sur lettres: un automate qui n'accepte un mot que si le nombre de fois que chaque lettre y apparaît répond à une contrainte arithmétique. Le deuxième article, Bounded Parikh Automata, étudie les langages bornés des automates de Parikh. Un langage est borné s'il existe des mots w_1, w_2, ..., w_k tels que chaque mot du langage peut s'écrire w_1...w_1w_2...w_2...w_k...w_k. Ces langages sont importants dans des domaines applicatifs et présentent usuellement de bonnes propriétés théoriques. Nous montrons que dans le contexte des langages bornés, le déterminisme n'influence pas l'expressivité des automates de Parikh. Le troisième article, Unambiguous Constrained Automata, introduit les automates contraints non ambigus, c'est-à-dire pour lesquels il n'existe qu'un chemin acceptant par mot reconnu par l'automate. Nous montrons qu'il s'agit d'un modèle combinant une meilleure expressivité et de meilleures propriétés de clôture que l'automate contraint déterministe. Le problème de déterminer si le langage d'un automate contraint non ambigu est régulier est montré décidable. Le quatrième article, Algebra and Complexity Meet Contrained Automata, présente une étude des représentations algébriques qu'admettent les automates contraints et les automates de Parikh affines. Nous déduisons de ces caractérisations des résultats d'expressivité et de complexité. Nous montrons aussi que certaines hypothèses classiques en complexité computationelle sont reliées à des résultats de séparation et de non clôture dans les automates de Parikh affines. La thèse est conclue par une ouverture à un possible approfondissement, au travers d'un certain nombre de problèmes ouverts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse s'intéresse à la cohomologie de fibrés en droite sur le fibré cotangent de variétés projectives. Plus précisément, pour $G$ un groupe algébrique simple, connexe et simplement connexe, $P$ un sous-groupe maximal de $G$ et $\omega$ un générateur dominant du groupe de caractères de $P$, on cherche à comprendre les groupes de cohomologie $H^i(T^*(G/P),\mathcal{L})$ où $\mathcal{L}$ est le faisceau des sections d'un fibré en droite sur $T^*(G/P)$. Sous certaines conditions, nous allons montrer qu'il existe un isomorphisme, à graduation près, entre $H^i(T^*(G/P),\mathcal{L})$ et $H^i(T^*(G/P),\mathcal{L}^{\vee})$ Après avoir travaillé dans un contexte théorique, nous nous intéresserons à certains sous-groupes paraboliques en lien avec les orbites nilpotentes. Dans ce cas, l'algèbre de Lie du radical unipotent de $P$, que nous noterons $\nLie$, a une structure d'espace vectoriel préhomogène. Nous pourrons alors déterminer quels cas vérifient les hypothèses nécessaires à la preuve de l'isomorphisme en montrant l'existence d'un $P$-covariant $f$ dans $\comp[\nLie]$ et en étudiant ses propriétés. Nous nous intéresserons ensuite aux singularités de la variété affine $V(f)$. Nous serons en mesure de montrer que sa normalisation est à singularités rationnelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire, composé d'un article en collaboration avec Monsieur Luc Vinet et Vincent X. Genest, est la suite du travail effectué sur les systèmes quantiques super-intégrables définis par des Hamiltoniens de type Dunkl. Plus particulièrement, ce mémoire vise l'analyse du problème de Coulomb-Dunkl dans le plan qui est une généralisation du système quantique de l'atome d'hydrogène impliquant des opérateurs de réflexion sur les variables x et y. Le modèle est défini par un potentiel en 1/r. Nous avons tout d'abord remarqué que l'Hamiltonien est séparable en coordonnées polaires et que les fonctions d'onde s'écrivent en termes de produits de polynômes de Laguerre généralisés et des harmoniques de Dunkl sur le cercle. L'algèbre générée par les opérateurs de symétrie nous a également permis de confirmer le caractère maximalement super-intégrable du problème de Coulomb-Dunkl. Nous avons aussi pu écrire explicitement les représentations de cette même algèbre. Nous avons finalement trouvé le spectre de l'énergie de manière algébrique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus particulièrement, nous considérons la métrique, les formes fondamentales et la courbure gaussienne induites par ces surfaces naturellement plongées dans l'algèbre de Lie su(n). Le premier chapitre présente des outils préliminaires pour comprendre les éléments des chapitres suivants. Nous y présentons les théories de jauge non-abéliennes et les modèles sigma grassmanniens bosoniques ainsi que supersymétriques. Nous nous intéressons aussi à la construction de surfaces dans l'algèbre de Lie su(n) à partir des solutions des modèles sigma bosoniques. Les trois prochains chapitres, formant cette thèse, présentent les contraintes devant être imposées sur les solutions de ces modèles afin d'obtenir des surfaces à courbure gaussienne constante. Ces contraintes permettent d'obtenir une classification des solutions en fonction des valeurs possibles de la courbure. Les chapitres 2 et 3 de cette thèse présentent une analyse de ces surfaces et de leurs solutions classiques pour les modèles sigma grassmanniens bosoniques. Le quatrième consiste en une analyse analogue pour une extension supersymétrique N=2 des modèles sigma bosoniques G(1,n)=CP^(n-1) incluant quelques résultats sur les modèles grassmanniens. Dans le deuxième chapitre, nous étudions les propriétés géométriques des surfaces associées aux solutions holomorphes des modèles sigma grassmanniens bosoniques. Nous donnons une classification complète de ces solutions à courbure gaussienne constante pour les modèles G(2,n) pour n=3,4,5. De plus, nous établissons deux conjectures sur les valeurs constantes possibles de la courbure gaussienne pour G(m,n). Nous donnons aussi des éléments de preuve de ces conjectures en nous appuyant sur les immersions et les coordonnées de Plücker ainsi que la séquence de Veronese. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Le troisième chapitre présente une analyse des surfaces à courbure gaussienne constante associées aux solutions non-holomorphes des modèles sigma grassmanniens bosoniques. Ce travail généralise les résultats du premier article et donne un algorithme systématique pour l'obtention de telles surfaces issues des solutions connues des modèles. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Dans le dernier chapitre, nous considérons une extension supersymétrique N=2 du modèle sigma bosonique ayant pour espace cible G(1,n)=CP^(n-1). Ce chapitre décrit la géométrie des surfaces obtenues des solutions du modèle et démontre, dans le cas holomorphe, qu'elles ont une courbure gaussienne constante si et seulement si la solution holomorphe consiste en une généralisation de la séquence de Veronese. De plus, en utilisant une version invariante de jauge du modèle en termes de projecteurs orthogonaux, nous obtenons des solutions non-holomorphes et étudions la géométrie des surfaces associées à ces nouvelles solutions. Ces résultats sont soumis dans la revue Communications in Mathematical Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire a deux objectifs principaux. Premièrement de développer et interpréter les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de borner la dimension cohomologique des k-algèbres par dessous; montrant que presque aucune k-algèbre commutative est quasi-libre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les fonctions génératrices des coefficients de Clebsch Gordan pour la superalgèbre de Lie osp(1|2) sont dérivées en utilisant deux approches. Une première approche généralise une méthode proposée par Granovskii et Zhedanov pour l'appliquer dans le cas de osp(1|2), une algèbre dont le coproduit est torsadé. Une seconde approche repose sur la réalisation de osp(1|2) en tant qu'algèbre dynamique d'un oscillateur parabosonique et utilise une équivalence dans cette réalisation entre le changements de coordonnées polaires à cartésiennes et le problème de Clebsch-Gordan. Un chapitre moins formel précède ces dérivations et présente comment le problème de Clebsch-Gordan s'interprète en tant que réalisation d'une algèbre de fusion. La notion abstraite de fusion est introduite, soulignant son importance en physique, pour en venir au cas particulier du problème de Clebsch-Gordan. Un survol du cas de l'algèbre osp(1|2) et de ses utilisations en physique mathématique conclut ce chapitre.