20 resultados para Possible solutions
Resumo:
Essai / Essay
Resumo:
En janvier 2007, à 28 ans, Louise Brown est devenue maman. Trente ans, c'est le temps qu'il faut à une génération pour se renouveler. C'est aussi le temps, si bref à l'échelle de l'histoire, pour que les bouleversements induits par la science et les moeurs au ~e siècle modifient profondément le visage de la famille et de son ciment le plus intime, la filiation. Ce travail rend compte de la manière dont le droit appréhende ces changements dans des sociétés occidentales de plus en plus tiraillées entre leurs racines judéo-chrétiennes et leurs aspirations technologiques. Il cherche à comprendre la place du droit dans les nouveaux édifices familiaux et à évaluer la qualité des solutions que celui-ci propose face aux enjeux multiples et complexes de la procréation assistée. Il s'attache pour ce faire à l'examen de deux juridictions partageant un héritage commun à bien des égards, mais suivant des voies normatives différentes : la Suisse et le Québec. À ce titre, il définit des outils conceptuels nécessaires à la compréhension de la notion de filiation; il rend compte de la façon dont le droit a manipulé ces outils en régissant l'établissement de la filiation, la preuve de la filiation et la procréation assistée à proprement parler; et il conclut par une évaluation critique des solutions envisagées dans les deux systèmes étudiés. Il met ainsi en exergue les enjeux de la procréation assistée pour le droit de la filiation et la grande palette de solutions législatives envisageables. Il démontre que deux systèmes de droit peuvent traduire des préoccupations partagées par des dispositions diamétralement opposées. En particulier, l'égalité, la liberté et le bien de l'enfant se concrétisent selon des conceptions distinctes. L'attachement aux institutions se manifeste à des degrés variables. Les innovations scientifiques sont accueillies avec un enthousiasme plus ou moins soutenu. Tous ces facteurs sont les détenninants des familles suisse et québécoise, qui, pour s'être longtemps ressemblées, prennent aujourd'hui des chemins différents...mais pas irrémédiablement irréconciliables.
Resumo:
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.
Le problème goth au IIIe siècle ap. J.-C. : perceptions et réalités, solutions et échecs militaires.
Resumo:
Au coeur de la crise du IIIe siècle, l’Empire subit de toutes parts les assauts de Barbares soudainement plus nombreux et plus virulents. Parmi ces peuples se trouvaient les Goths, nouvellement arrivés, qui tinrent les Romains et leurs armées en échecs pendant vingt longues années. Face aux multiples défaites, parfois catastrophiques, et aux très nombreuses villes capturées et saccagées par les envahisseurs, ce mémoire se propose d’apporter une nouvelle approche à la compréhension des échecs dont les Romains firent l’expérience, mais aussi des solutions militaires qu’ils mirent en oeuvre face aux Goths au IIIe siècle. Les défaites majeures subies durant la décennie 250 sur le bas-Danube puis dans la région de la Mer Noire semblent pouvoir s’expliquer en partie par l’absence de connaissance qu’avaient Romains des Goths. Les premières victoires romaines significatives contre les Goths sous les règnes de Gallien puis Claude II ont été rendues possibles grâce à une évolution de la stratégie romaine face à cet ennemi, privilégiant l’emploi de la cavalerie et anticipant les schémas d’attaques des envahisseurs. Les décisions politiques et militaires d’Aurélien dans la région montrent que les Romains se sont enfin adaptés à la menace en modifiant leur perception des Goths, désormais mieux connus.
Resumo:
Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus particulièrement, nous considérons la métrique, les formes fondamentales et la courbure gaussienne induites par ces surfaces naturellement plongées dans l'algèbre de Lie su(n). Le premier chapitre présente des outils préliminaires pour comprendre les éléments des chapitres suivants. Nous y présentons les théories de jauge non-abéliennes et les modèles sigma grassmanniens bosoniques ainsi que supersymétriques. Nous nous intéressons aussi à la construction de surfaces dans l'algèbre de Lie su(n) à partir des solutions des modèles sigma bosoniques. Les trois prochains chapitres, formant cette thèse, présentent les contraintes devant être imposées sur les solutions de ces modèles afin d'obtenir des surfaces à courbure gaussienne constante. Ces contraintes permettent d'obtenir une classification des solutions en fonction des valeurs possibles de la courbure. Les chapitres 2 et 3 de cette thèse présentent une analyse de ces surfaces et de leurs solutions classiques pour les modèles sigma grassmanniens bosoniques. Le quatrième consiste en une analyse analogue pour une extension supersymétrique N=2 des modèles sigma bosoniques G(1,n)=CP^(n-1) incluant quelques résultats sur les modèles grassmanniens. Dans le deuxième chapitre, nous étudions les propriétés géométriques des surfaces associées aux solutions holomorphes des modèles sigma grassmanniens bosoniques. Nous donnons une classification complète de ces solutions à courbure gaussienne constante pour les modèles G(2,n) pour n=3,4,5. De plus, nous établissons deux conjectures sur les valeurs constantes possibles de la courbure gaussienne pour G(m,n). Nous donnons aussi des éléments de preuve de ces conjectures en nous appuyant sur les immersions et les coordonnées de Plücker ainsi que la séquence de Veronese. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Le troisième chapitre présente une analyse des surfaces à courbure gaussienne constante associées aux solutions non-holomorphes des modèles sigma grassmanniens bosoniques. Ce travail généralise les résultats du premier article et donne un algorithme systématique pour l'obtention de telles surfaces issues des solutions connues des modèles. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Dans le dernier chapitre, nous considérons une extension supersymétrique N=2 du modèle sigma bosonique ayant pour espace cible G(1,n)=CP^(n-1). Ce chapitre décrit la géométrie des surfaces obtenues des solutions du modèle et démontre, dans le cas holomorphe, qu'elles ont une courbure gaussienne constante si et seulement si la solution holomorphe consiste en une généralisation de la séquence de Veronese. De plus, en utilisant une version invariante de jauge du modèle en termes de projecteurs orthogonaux, nous obtenons des solutions non-holomorphes et étudions la géométrie des surfaces associées à ces nouvelles solutions. Ces résultats sont soumis dans la revue Communications in Mathematical Physics.