38 resultados para Estimateur de Bayes
Resumo:
L’imputation simple est très souvent utilisée dans les enquêtes pour compenser pour la non-réponse partielle. Dans certaines situations, la variable nécessitant l’imputation prend des valeurs nulles un très grand nombre de fois. Ceci est très fréquent dans les enquêtes entreprises qui collectent les variables économiques. Dans ce mémoire, nous étudions les propriétés de deux méthodes d’imputation souvent utilisées en pratique et nous montrons qu’elles produisent des estimateurs imputés biaisés en général. Motivé par un modèle de mélange, nous proposons trois méthodes d’imputation et étudions leurs propriétés en termes de biais. Pour ces méthodes d’imputation, nous considérons un estimateur jackknife de la variance convergent vers la vraie variance, sous l’hypothèse que la fraction de sondage est négligeable. Finalement, nous effectuons une étude par simulation pour étudier la performance des estimateurs ponctuels et de variance en termes de biais et d’erreur quadratique moyenne.
Resumo:
On s’intéresse ici aux erreurs de modélisation liées à l’usage de modèles de flammelette sous-maille en combustion turbulente non prémélangée. Le but de cette thèse est de développer une stratégie d’estimation d’erreur a posteriori pour déterminer le meilleur modèle parmi une hiérarchie, à un coût numérique similaire à l’utilisation de ces mêmes modèles. Dans un premier temps, une stratégie faisant appel à un estimateur basé sur les résidus pondérés est développée et testée sur un système d’équations d’advection-diffusion-réaction. Dans un deuxième temps, on teste la méthodologie d’estimation d’erreur sur un autre système d’équations, où des effets d’extinction et de réallumage sont ajoutés. Lorsqu’il n’y a pas d’advection, une analyse asymptotique rigoureuse montre l’existence de plusieurs régimes de combustion déjà observés dans les simulations numériques. Nous obtenons une approximation des paramètres de réallumage et d’extinction avec la courbe en «S», un graphe de la température maximale de la flamme en fonction du nombre de Damköhler, composée de trois branches et d’une double courbure. En ajoutant des effets advectifs, on obtient également une courbe en «S» correspondant aux régimes de combustion déjà identifiés. Nous comparons les erreurs de modélisation liées aux approximations asymptotiques dans les deux régimes stables et établissons une nouvelle hiérarchie des modèles en fonction du régime de combustion. Ces erreurs sont comparées aux estimations données par la stratégie d’estimation d’erreur. Si un seul régime stable de combustion existe, l’estimateur d’erreur l’identifie correctement ; si plus d’un régime est possible, on obtient une fac˛on systématique de choisir un régime. Pour les régimes où plus d’un modèle est approprié, la hiérarchie prédite par l’estimateur est correcte.
Utilisation de splines monotones afin de condenser des tables de mortalité dans un contexte bayésien
Resumo:
Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones en lignes et/ou en colonnes, pour une éventuelle application sur les tables de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons la forme fonctionnelle des données par splines bidimensionnelles. L’objectif consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace d’entreposage de la table en minimisant la perte d’information. De même, nous désirons étudier le temps nécessaire pour reconstituer la table. L’approximation doit conserver les mêmes propriétés que la table de référence, en particulier la monotonie des données. Nous travaillons avec une base de fonctions splines monotones afin d’imposer plus facilement la monotonie au modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite, nous indiquons comment obtenir un estimateur a posteriori à l’aide des méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le comportement de notre estimateur en modélisant une table de la loi normale ainsi qu’une table t de distribution de Student. L’estimation de nos données d’intérêt, soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité.
Resumo:
Dans ce mémoire, nous étudions le problème de l'estimation de la variance pour les estimateurs par double dilatation et de calage pour l'échantillonnage à deux phases. Nous proposons d'utiliser une décomposition de la variance différente de celle habituellement utilisée dans l'échantillonnage à deux phases, ce qui mène à un estimateur de la variance simplifié. Nous étudions les conditions sous lesquelles les estimateurs simplifiés de la variance sont valides. Pour ce faire, nous considérons les cas particuliers suivants : (1) plan de Poisson à la deuxième phase, (2) plan à deux degrés, (3) plan aléatoire simple sans remise aux deux phases, (4) plan aléatoire simple sans remise à la deuxième phase. Nous montrons qu'une condition cruciale pour la validité des estimateurs simplifiés sous les plans (1) et (2) consiste à ce que la fraction de sondage utilisée pour la première phase soit négligeable (ou petite). Nous montrons sous les plans (3) et (4) que, pour certains estimateurs de calage, l'estimateur simplifié de la variance est valide lorsque la fraction de sondage à la première phase est petite en autant que la taille échantillonnale soit suffisamment grande. De plus, nous montrons que les estimateurs simplifiés de la variance peuvent être obtenus de manière alternative en utilisant l'approche renversée (Fay, 1991 et Shao et Steel, 1999). Finalement, nous effectuons des études par simulation dans le but d'appuyer les résultats théoriques.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.
Resumo:
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques.
Resumo:
Dans ce mémoire, nous proposons une méthodologie statistique permettant d’obtenir un estimateur de l’espérance de vie des clients en assurance. Les prédictions effectuées tiennent compte des caractéristiques individuelles des clients, notamment du fait qu’ils peuvent détenir différents types de produits d’assurance (automobile, résidentielle ou les deux). Trois approches sont comparées. La première approche est le modèle de Markov simple, qui suppose à la fois l’homogénéité et la stationnarité des probabilités de transition. L’autre modèle – qui a été implémenté par deux approches, soit une approche directe et une approche par simulations – tient compte de l’hétérogénéité des probabilités de transition, ce qui permet d’effectuer des prédictions qui évoluent avec les caractéristiques des individus dans le temps. Les probabilités de transition de ce modèle sont estimées par des régressions logistiques multinomiales.
Resumo:
L'analyse en composantes indépendantes (ACI) est une méthode d'analyse statistique qui consiste à exprimer les données observées (mélanges de sources) en une transformation linéaire de variables latentes (sources) supposées non gaussiennes et mutuellement indépendantes. Dans certaines applications, on suppose que les mélanges de sources peuvent être groupés de façon à ce que ceux appartenant au même groupe soient fonction des mêmes sources. Ceci implique que les coefficients de chacune des colonnes de la matrice de mélange peuvent être regroupés selon ces mêmes groupes et que tous les coefficients de certains de ces groupes soient nuls. En d'autres mots, on suppose que la matrice de mélange est éparse par groupe. Cette hypothèse facilite l'interprétation et améliore la précision du modèle d'ACI. Dans cette optique, nous proposons de résoudre le problème d'ACI avec une matrice de mélange éparse par groupe à l'aide d'une méthode basée sur le LASSO par groupe adaptatif, lequel pénalise la norme 1 des groupes de coefficients avec des poids adaptatifs. Dans ce mémoire, nous soulignons l'utilité de notre méthode lors d'applications en imagerie cérébrale, plus précisément en imagerie par résonance magnétique. Lors de simulations, nous illustrons par un exemple l'efficacité de notre méthode à réduire vers zéro les groupes de coefficients non-significatifs au sein de la matrice de mélange. Nous montrons aussi que la précision de la méthode proposée est supérieure à celle de l'estimateur du maximum de la vraisemblance pénalisée par le LASSO adaptatif dans le cas où la matrice de mélange est éparse par groupe.
Resumo:
Les fichiers qui accompagnent mon document ont été réalisés avec le logiciel Latex et les simulations ont été réalisés par Splus(R).
Resumo:
Ce travail de thèse porte sur l’application de la pharmacocinétique de population dans le but d’optimiser l’utilisation de certains médicaments chez les enfants immunosupprimés et subissant une greffe. Parmi les différents médicaments utilisés chez les enfants immunosupprimés, l’utilisation du busulfan, du tacrolimus et du voriconazole reste problématique, notamment à cause d’une très grande variabilité interindividuelle de leur pharmacocinétique rendant nécessaire l’individualisation des doses par le suivi thérapeutique pharmacologique. De plus, ces médicaments n’ont pas fait l’objet d’études chez les enfants et les doses sont adaptées à partir des adultes. Cette dernière pratique ne prend pas en compte les particularités pharmacologiques qui caractérisent l’enfant tout au long de son développement et rend illusoire l’extrapolation aux enfants des données acquises chez les adultes. Les travaux effectués dans le cadre de cette thèse ont étudié successivement la pharmacocinétique du busulfan, du voriconazole et du tacrolimus par une approche de population en une étape (modèles non-linéaires à effets mixtes). Ces modèles ont permis d’identifier les principales sources de variabilités interindividuelles sur les paramètres pharmacocinétiques. Les covariables identifiées sont la surface corporelle et le poids. Ces résultats confirment l’importance de tenir en compte l’effet de la croissance en pédiatrie. Ces paramètres ont été inclus de façon allométrique dans les modèles. Cette approche permet de séparer l’effet de la mesure anthropométrique d’autres covariables et permet la comparaison des paramètres pharmacocinétiques en pédiatrie avec ceux des adultes. La prise en compte de ces covariables explicatives devrait permettre d’améliorer la prise en charge a priori des patients. Ces modèles développés ont été évalués pour confirmer leur stabilité, leur performance de simulation et leur capacité à répondre aux objectifs initiaux de la modélisation. Dans le cas du busulfan, le modèle validé a été utilisé pour proposer par simulation une posologie qui améliorerait l’atteinte de l’exposition cible, diminuerait l’échec thérapeutique et les risques de toxicité. Le modèle développé pour le voriconazole, a permis de confirmer la grande variabilité interindividuelle dans sa pharmacocinétique chez les enfants immunosupprimés. Le nombre limité de patients n’a pas permis d’identifier des covariables expliquant cette variabilité. Sur la base du modèle de pharmacocinétique de population du tacrolimus, un estimateur Bayesien a été mis au point, qui est le premier dans cette population de transplantés hépatiques pédiatriques. Cet estimateur permet de prédire les paramètres pharmacocinétiques et l’exposition individuelle au tacrolimus sur la base d’un nombre limité de prélèvements. En conclusion, les travaux de cette thèse ont permis d’appliquer la pharmacocinétique de population en pédiatrie pour explorer les caractéristiques propres à cette population, de décrire la variabilité pharmacocinétique des médicaments utilisés chez les enfants immunosupprimés, en vue de l’individualisation du traitement. Les outils pharmacocinétiques développés s’inscrivent dans une démarche visant à diminuer le taux d'échec thérapeutique et l’incidence des effets indésirables ou toxiques chez les enfants immunosupprimés suite à une transplantation.
Resumo:
Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.