18 resultados para CONVEX


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le nombre important de véhicules sur le réseau routier peut entraîner des problèmes d'encombrement et de sécurité. Les usagers des réseaux routiers qui nous intéressent sont les camionneurs qui transportent des marchandises, pouvant rouler avec des véhicules non conformes ou emprunter des routes interdites pour gagner du temps. Le transport de matières dangereuses est réglementé et certains lieux, surtout les ponts et les tunnels, leur sont interdits d'accès. Pour aider à faire appliquer les lois en vigueur, il existe un système de contrôles routiers composé de structures fixes et de patrouilles mobiles. Le déploiement stratégique de ces ressources de contrôle mise sur la connaissance du comportement des camionneurs que nous allons étudier à travers l'analyse de leurs choix de routes. Un problème de choix de routes peut se modéliser en utilisant la théorie des choix discrets, elle-même fondée sur la théorie de l'utilité aléatoire. Traiter ce type de problème avec cette théorie est complexe. Les modèles que nous utiliserons sont tels, que nous serons amenés à faire face à des problèmes de corrélation, puisque plusieurs routes partagent probablement des arcs. De plus, puisque nous travaillons sur le réseau routier du Québec, le choix de routes peut se faire parmi un ensemble de routes dont le nombre est potentiellement infini si on considère celles ayant des boucles. Enfin, l'étude des choix faits par un humain n'est pas triviale. Avec l'aide du modèle de choix de routes retenu, nous pourrons calculer une expression de la probabilité qu'une route soit prise par le camionneur. Nous avons abordé cette étude du comportement en commençant par un travail de description des données collectées. Le questionnaire utilisé par les contrôleurs permet de collecter des données concernant les camionneurs, leurs véhicules et le lieu du contrôle. La description des données observées est une étape essentielle, car elle permet de présenter clairement à un analyste potentiel ce qui est accessible pour étudier les comportements des camionneurs. Les données observées lors d'un contrôle constitueront ce que nous appellerons une observation. Avec les attributs du réseau, il sera possible de modéliser le réseau routier du Québec. Une sélection de certains attributs permettra de spécifier la fonction d'utilité et par conséquent la fonction permettant de calculer les probabilités de choix de routes par un camionneur. Il devient alors possible d'étudier un comportement en se basant sur des observations. Celles provenant du terrain ne nous donnent pas suffisamment d'information actuellement et même en spécifiant bien un modèle, l'estimation des paramètres n'est pas possible. Cette dernière est basée sur la méthode du maximum de vraisemblance. Nous avons l'outil, mais il nous manque la matière première que sont les observations, pour continuer l'étude. L'idée est de poursuivre avec des observations de synthèse. Nous ferons des estimations avec des observations complètes puis, pour se rapprocher des conditions réelles, nous continuerons avec des observations partielles. Ceci constitue d'ailleurs un défi majeur. Nous proposons pour ces dernières, de nous servir des résultats des travaux de (Bierlaire et Frejinger, 2008) en les combinant avec ceux de (Fosgerau, Frejinger et Karlström, 2013). Bien qu'elles soient de nature synthétiques, les observations que nous utilisons nous mèneront à des résultats tels, que nous serons en mesure de fournir une proposition concrète qui pourrait aider à optimiser les décisions des responsables des contrôles routiers. En effet, nous avons réussi à estimer, sur le réseau réel du Québec, avec un seuil de signification de 0,05 les valeurs des paramètres d'un modèle de choix de routes discrets, même lorsque les observations sont partielles. Ces résultats donneront lieu à des recommandations sur les changements à faire dans le questionnaire permettant de collecter des données.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse concerne le problème de trouver une notion naturelle de «courbure scalaire» en géométrie kählérienne généralisée. L'approche utilisée consiste à calculer l'application moment pour l'action du groupe des difféomorphismes hamiltoniens sur l'espace des structures kählériennes généralisées de type symplectique. En effet, il est bien connu que l'application moment pour la restriction de cette action aux structures kählériennes s'identifie à la courbure scalaire riemannienne. On se limite à une certaine classe de structure kählériennes généralisées sur les variétés toriques notée $DGK_{\omega}^{\mathbb{T}}(M)$ que l'on reconnaît comme étant classifiées par la donnée d'une matrice antisymétrique $C$ et d'une fonction réelle strictement convexe $\tau$ (ayant un comportement adéquat au voisinage de la frontière du polytope moment). Ce point de vue rend évident le fait que toute structure kählérienne torique peut être déformée en un élément non kählérien de $DGK_{\omega}^{\mathbb{T}}(M)$, et on note que cette déformation à lieu le long d'une des classes que R. Goto a démontré comme étant libre d'obstruction. On identifie des conditions suffisantes sur une paire $(\tau,C)$ pour qu'elle donne lieu à un élément de $DGK_{\omega}^{\mathbb{T}}(M)$ et on montre qu'en dimension 4, ces conditions sont également nécessaires. Suivant l'adage «l'application moment est la courbure» mentionné ci-haut, des formules pour des notions de «courbure scalaire hermitienne généralisée» et de «courbure scalaire riemannienne généralisée» (en dimension 4) sont obtenues en termes de la fonction $\tau$. Enfin, une expression de la courbure scalaire riemannienne généralisée en termes de la structure bihermitienne sous-jacente est dégagée en dimension 4. Lorsque comparée avec le résultat des physiciens Coimbra et al., notre formule suggère un choix canonique pour le dilaton de leur théorie.