32 resultados para Yeast Saccharomyces-cerevisiae
Resumo:
Les changements évolutifs nous instruisent sur les nombreuses innovations permettant à chaque organisme de maximiser ses aptitudes en choisissant le partenaire approprié, telles que les caractéristiques sexuelles secondaires, les patrons comportementaux, les attractifs chimiques et les mécanismes sensoriels y répondant. L'haploïde de la levure Saccharomyces cerevisiae distingue son partenaire en interprétant le gradient de la concentration d'une phéromone sécrétée par les partenaires potentiels grâce à un réseau de protéines signalétiques de type kinase activées par la mitose (MAPK). La décision de la liaison sexuelle chez la levure est un événement en "tout–ourien", à la manière d'un interrupteur. Les cellules haploïdes choisissent leur partenaire sexuel en fonction de la concentration de phéromones qu’il produit. Seul le partenaire à proximité sécrétant des concentrations de phéromones égales ou supérieures à une concentration critique est retenu. Les faibles signaux de phéromones sont attribués à des partenaires pouvant mener à des accouplements infructueux. Notre compréhension du mécanisme moléculaire contrôlant cet interrupteur de la décision d'accouplement reste encore mince. Dans le cadre de la présente thèse, je démontre que le mécanisme de décision de la liaison sexuelle provient de la compétition pour le contrôle de l'état de phosphorylation de quatre sites sur la protéine d'échafaudage Ste5, entre la MAPK, Fus3, et la phosphatase,Ptc1. Cette compétition résulte en la dissociation de type « intérupteur » entre Fus3 et Ste5, nécessaire à la prise de décision d'accouplement en "tout-ou-rien". Ainsi, la décision de la liaison sexuelle s'effectue à une étape précoce de la voie de réponse aux phéromones et se produit rapidement, peut-être dans le but de prévenir la perte d’un partenaire potentiel. Nous argumentons que l'architecture du circuit Fus3-Ste5-Ptc1 génère un mécanisme inédit d'ultrasensibilité, ressemblant à "l'ultrasensibilité d'ordre zéro", qui résiste aux variations de concentration de ces protéines. Cette robustesse assure que l'accouplement puisse se produire en dépit de la stochasticité cellulaire ou de variations génétiques entre individus.Je démontre, par la suite, qu'un évènement précoce en réponse aux signaux extracellulaires recrutant Ste5 à la membrane plasmique est également ultrasensible à l'augmentation de la concentration de phéromones et que cette ultrasensibilité est engendrée par la déphosphorylation de huit phosphosites en N-terminal sur Ste5 par la phosphatase Ptc1 lorsqu'elle est associée à Ste5 via la protéine polarisante, Bem1. L'interférence dans ce mécanisme provoque une perte de l'ultrasensibilité et réduit, du même coup, l'amplitude et la fidélité de la voie de réponse aux phéromones à la stimulation. Ces changements se reflètent en une réduction de la fidélité et de la précision de la morphologie attribuable à la réponse d'accouplement. La polarisation dans l'assemblage du complexe protéique à la surface de la membrane plasmique est un thème général persistant dans tous les organismes, de la bactérie à l'humain. Un tel complexe est en mesure d'accroître l'efficacité, la fidélité et la spécificité de la transmission du signal. L'ensemble de nos découvertes démontre que l'ultrasensibilité, la précision et la robustesse de la réponse aux phéromones découlent de la régulation de la phosphorylation stoichiométrique de deux groupes de phosphosites sur Ste5, par la phosphatase Ptc1, un groupe effectuant le recrutement ultrasensible de Ste5 à la membrane et un autre incitant la dissociation et l'activation ultrasensible de la MAPK terminal Fus3. Le rôle modulateur de Ste5 dans la décision de la destinée cellulaire étend le répertoire fonctionnel des protéines d'échafaudage bien au-delà de l'accessoire dans la spécificité et l'efficacité des traitements de l'information. La régulation de la dynamique des caractères signal-réponse à travers une telle régulation modulaire des groupes de phosphosites sur des protéines d'échafaudage combinées à l'assemblage à la membrane peut être un moyen général par lequel la polarisation du destin cellulaire est obtenue. Des mécanismes similaires peuvent contrôler les décisions cellulaires dans les organismes complexes et peuvent être compromis dans des dérèglements cellulaires, tel que le cancer. Finalement, sur un thème relié, je présente la découverte d'un nouveau mécanisme où le seuil de la concentration de phéromones est contrôlé par une voie sensorielle de nutriments, ajustant, de cette manière, le point prédéterminé dans lequel la quantité et la qualité des nutriments accessibles dans l'environnement déterminent le seuil à partir duquel la levure s'accouple. La sous-unité régulatrice de la kinase à protéine A (PKA),Bcy1, une composante clé du réseau signalétique du senseur aux nutriments, interagit directement avec la sous-unité α des petites protéines G, Gpa1, le premier effecteur dans le réseau de réponse aux phéromones. L'interaction Bcy1-Gpa1 est accrue lorsque la cellule croit en présence d'un sucre idéal, le glucose, diminuant la concentration seuil auquel la décision d'accouplement est activée. Compromettre l'interaction Bcy1-Gpa1 ou inactiver Bcy1 accroît la concentration seuil nécessaire à une réponse aux phéromones. Nous argumentons qu'en ajustant leur sensibilité, les levures peuvent intégrer le stimulus provenant des phéromones au niveau du glucose extracellulaire, priorisant la décision de survie dans un milieu pauvre ou continuer leur cycle sexuel en choisissant un accouplement.
Resumo:
L’acétylation est une modification post-traductionnelle des protéines essentielles. Elle est impliquée dans bon nombre de processus cellulaires importants comme la régulation de la structure de la chromatine et le recrutement de protéines. Deux groupes d’enzymes, soient les lysines acétyltransférases et les lysines désacétylases, régulent cette modification, autant sur les histones que sur les autres protéines. Au cours des dernières années, de petites molécules inhibitrices des désacétylases ont été découvertes. Certaines d’entre elles semblent prometteuses contre diverses maladies telles le cancer. L’acide valproïque, un inhibiteur de deux des trois classes des désacétylases, a un effet antiprolifératif chez plusieurs organismes modèles. Toutefois, les mécanismes cellulaires sous-jacents à cet effet restent encore méconnus. Ce mémoire met en lumière l’effet pH dépendant de l’acide valproïque sur différentes voies cellulaires importantes chez la levure Saccharomyces cerevisiae. Il démontre que ce composé a la capacité d’inhiber la transition entre les phases G1 et S par son action sur l’expression des cyclines de la phase G1. De plus, il inhibe l’activation de la kinase principale de la voie activée suite à un stress à la paroi cellulaire. L’acide valproïque occasionne également un arrêt dans la réplication de l’ADN sans y causer de dommage. Il s’agit là d’un effet unique qui, à notre connaissance, n’est pas observable avec d’autres agents qui inhibent la progression en phase S.
Resumo:
Affiliation: Département de microbiologie et immunologie, Faculté de médecine, Université de Montréal
Resumo:
La bléomycine est un antibiotique cytotoxique, son potentiel génotoxique est plus important quand elle est utilisée en combinaison avec des agents antinéoplasiques sur le cancer testiculaire, que sur les autres types qui développent souvent une résistance envers la drogue. Notre but consiste alors de mettre en évidence ce mécanisme de résistance en utilisant l’organisme modèle Saccharomyces cerevisiae. Nous avons démontré au sein de notre laboratoire, que les levures délétées au niveau de leur coactivateur transcriptionnel Imp2, présentent une hypersensibilité à la bléomycine, en raison de son accumulation toxique dans la cellule. Ceci suggère que Imp2 pourrait réguler l’expression d’une ou de plusieurs pompes à efflux, capables d’expulser la bléomycine à l’extérieur de la cellule. Pour tester notre hypothèse, nous avons recherché des suppresseurs multicopies capables de restaurer la résistance à la bléomycine chez le mutant imp2, et c’est ainsi que nous avons identifié l'activateur transcriptionnel Yap1. Ce dernier se lie à une région spécifique localisée au niveau du promoteur et permet d’activer l'expression d'un sous-ensemble de gènes, codant pour des pompes à efflux, impliquées dans la résistance aux drogues. Selon la littérature, au moins 27 pompes à efflux ont été identifiées chez la levure Saccharomyces cerevisiae, certaines d’entre elles disposent du site de liaison pour Yap1, tels que Qdr3, Tpo2 et Tpo1. Afin de déterminer si une de ces pompes expulse la bléomycine, nous avons créé des mutations simples et doubles en combinaison avec IMP2, aussi nous avons verifié si les mutants étaient sensibles à la drogue et enfin, nous avons testé si la surexpression de Yap1 pouvait restaurer le phénotype sauvage chez ces mutants, via l’activation de pompes à efflux.
Resumo:
La chromatine est plus qu’un système d’empaquetage de l’ADN ; elle est le support de toutes les réactions liées à l’ADN dans le noyau des cellules eucaryotes et participe au contrôle de l’accès de l’ARN polymérase II (ARNPolII) à l’ADN. Responsable de la transcription de tous les ARNm des cellules eucaryotes, l’ARNPolII doit, suivant son recrutement aux promoteurs des gènes, transcrire l’ADN en traversant la matrice chromatinienne. Grâce au domaine C-terminal (CTD) de sa sous-unité Rpb1, elle coordonne la maturation de l’ARNm en cours de synthèse ainsi que les modifications de la chromatine, concomitantes à la transcription. Cette thèse s’intéresse à deux aspects de la transcription : la matrice, avec la localisation de la variante d’histone H2A.Z, et la machinerie de transcription avec le cycle de phosphorylation du CTD de l’ARNPolII. Suivant l’introduction, le chapitre 2 de cette thèse constitue un protocole détaillé et annoté de la technique de ChIP-chip, chez la levure Saccharomyces cerevisiae. Cette technique phare dans l’étude in vivo des phénomènes liés à l’ADN a grandement facilité l’étude du rôle de la chromatine dans les phénomènes nucléaires, en permettant de localiser sur le génome les marques et les variantes d’histones. Ce chapitre souligne l’importance de contrôles adéquats, spécifiques à l’étude de la chromatine. Au chapitre 3, grâce à la méthode de ChIP-chip, la variante d’histone H2A.Z est cartographiée au génome de la levure Saccharomyces cerevisiae avec une résolution d’environ 300 paires de bases. Nos résultats montrent que H2A.Z orne un à deux nucléosomes au promoteur de la majorité des gènes. L’enrichissement de H2A.Z est anticorrélé à la transcription et nos résultats suggèrent qu’elle prépare la chromatine pour l’activation des gènes. De plus H2A.Z semble réguler la localisation des nucléosomes. Le chapitre suivant s’intéresse à la transcription sous l’angle de la machinerie de transcription en se focalisant sur le cycle de phosphorylation de l’ARN polymérase II. Le domaine C-terminal de sa plus large sous-unité est formé de répétitions d’un heptapeptide YSPTSPS dont les résidus peuvent être modifiés au cours de la transcription. Cette étude localise les marques de phosphorylation des trois résidus sérine de manière systématique dans des souches mutantes des kinases et phosphatases. Nos travaux confirment le profil universel des marques de phosphorylations aux gènes transcrits. Appuyés par des essais in vitro, ils révèlent l’interaction complexe des enzymes impliqués dans la phosphorylation, et identifient Ssu72 comme la phosphatase de la sérine 7. Cet article appuie également la notion de « variantes » des marques de phosphorylation bien que leur étude spécifique s’avère encore difficile. La discussion fait le point sur les travaux qui ont suivi ces articles, et sur les expériences excitantes en cours dans notre laboratoire.
Resumo:
Please find the referenced videos attached
Resumo:
Nhx1 est un antiport vacuolaire de Na+/H+ chez la levure Saccharomyces cerevisiae. Nhx1 joue un rôle important dans le maintien de l’homéostasie ionique du cytoplasme de la cellule. En effet, la mutation du gène NHX1 chez la levure nhx1Δ entraîne une perte de l’homéostasie cellulaire quand les cellules sont cultivées dans un milieu de faible osmolarité. Ce travail rapporte pour la première fois, et contrairement à la cellule parentale, que la mutation du gène NHX1 a pour effet une sensibilité du mutant nhx1Δ à une variété des drogues et des agents cationiques et anioniques lorsque les cellules sont cultivées dans un milieu riche. En outre, dans ces conditions de culture, aucune sensibilité n’a été observée chez le mutant nhx1Δ quand les cellules sont traitées avec différentes concentrations de sel. Nous avons aussi démontré que la sensibilité du mutant nhx1Δ aux différents agents ainsi que la sécrétion de l’enzyme carboxypeptidase Y observé chez ce mutant n’ont pas été restauré lorsque les cellules sont cultivées dans des milieux avec différents pH ou avec différentes concentrations de sel. Enfin, une analyse génétique a révélé que le mutant nhx1Δ montre un phénotype distinct d’autres mutants qui ont un défaut dans le trafic entre le compartiment pré-vacuolaire et l’appareil de Golgi quand ces cellules sont traitées avec différents agents. Cette analyse prouve que la sensibilité de nhx1Δ aux différents agents n’est pas liée au trafic entre le compartiment pré-vacuolaire et l’appareil de Golgi.
Resumo:
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices.
Resumo:
Chez la levure Saccharomyces cerevisiae, l'acétylation de l'histone H3 sur la lysine 56 (H3K56ac) est présente sur les histones néo-synthétisées déposées derrière les fourches de réplication et est essentielle pour préserver la viabilité cellulaire en réponse au dommage à l'ADN. La désacétylation d'H3K56 sur l'ensemble du génome catalysée par Hst3 et Hst4 et a lieu en phase G2 ou M. H3K56ac est une lame à double tranchant. L'absence d'H3K56ac rend les cellules sensibles aux dommages à l'ADN. En revanche, un excès d'acétylation d'H3K56 dans un mutant hst3Δ hst4Δ a des conséquences encore plus sévères tels que la thermo-sensibilité, l'hypersensibilité aux agents génotoxiques, l'instabilité génomique ainsi qu'une courte durée de vie réplicative. Les désacétylases Hst3 et Hst4 sont étroitement régulées au cours du cycle cellulaire afin de permettre à l'H3K56ac d'exercer son rôle en réponse aux dommages à l'ADN tout en évitant les conséquences néfastes de l'hyperacétylation d'H3K56. Dans cette thèse, nous avons identifié la machinerie moléculaire responsable de la dégradation de Hst3. De plus, nous avons exploré les raisons pour lesquelles l'absence de désacétylation donne lieu aux phénotypes du mutant hst3Δ hst4Δ. Au chapitre 2, nous démontrons que la dégradation d'Hst3 peut être complétée avant l'anaphase. Ceci suggère que la désacétylation de H3K56 a lieu durant une courte fenêtre du cycle cellulaire se situant entre la complétion de la phase S et la métaphase. De plus, nous avons identifié deux sites de phosphorylation d'Hst3 par la kinase cycline-dépendante 1 (Cdk1) et démontré que ces évènements de phosphorylation conduisent à la dégradation d'Hst3 in vivo. Nous avons aussi démontré que l'ubiquityltransférase Cdc34 et l'ubiquitine ligase SCFCdc4 sont requises pour la dégradation d'Hst3. Finalement, nous avons montré que la phosphorylation d'Hst3 par la kinase mitotique Clb2-Cdk1 peut directement entraîner l'ubiquitylation d'Hst3 par SCFCdc4 in vitro. Au chapitre 3, nous avons étudié les mécanismes moléculaires sous-jacents à la sensibilité extrême du mutant hst3Δ hst4Δ aux agents qui endommagent l'ADN. Nous avons établi qu'en raison de la présence anormale d'H3K56ac devant les fourches de réplication, le mutant hst3Δ hst4Δ exhibe une forte perte de viabilité lorsqu'exposé au méthyl méthanesulfonate (MMS) durant un seul passage à travers la phase S. Nous avons aussi découvert que, malgré le fait que le point de contrôle de réponse aux dommages à l'ADN est activé normalement dans le mutant hst3Δ hst4Δ, ce mutant est incapable de compléter la réplication de l'ADN et d'inactiver le point de contrôle pour une longue période de temps après exposition transitoire au MMS. L'ensemble de nos résultats suggère que les lésions à l'ADN induites par le MMS dans le mutant hst3Δ hst4Δ causent une forte perte de viabilité parce que ce mutant est incapable de compléter la réplication de l'ADN après une exposition transitoire au MMS. Dans la deuxième section du chapitre 3, nous avons employé une approche génétique afin d'identifier de nouveaux mécanismes de suppression de deux phénotypes prononcés du mutant hst3Δ hst4Δ. Nous avons découvert que la délétion de plusieurs gènes impliqués dans la formation de frontières entre l'hétérochromatine et de l'euchromatine atténue les phénotypes du mutant hst3Δ hst4Δ sans réduire l'hyperacétylation d'H3K56. Nos résultats indiquent aussi que l'abondante acétylation de l'histone H4 sur la lysine 16 (H4K16ac) est néfaste au mutant hst3Δ hst4Δ. Ce résultat suggère un lien génétique intriguant entre l'acétylation d'H3K56 et celle d'H4K16. L'existence de ce lien était jusqu'à présent inconnu. Nous avons identifié un groupe de suppresseurs spontanés où H3K56ac est indétectable, mais la majorité de nos suppresseurs ne montrent aucune réduction flagrante d'H3K56ac ou d'H4 K16ac par rapport aux niveaux observés dans le mutant hst3Δ hst4Δ. Une étude plus approfondie de ce groupe de suppresseurs est susceptible de mener à la découverte de nouveaux mécanismes génétiques ou épigénétiques permettant d'éviter les conséquences catastrophiques de l'hyperacétylation d'H3K56 chez le mutant hst3Δ hst4Δ. En résumé, cette thèse identifie la machinerie moléculaire responsable de la dégradation d'Hst3 (une désacétylase d'H3K56) durant une fenêtre de temps situées entre la fin de la phase S et la métaphase. Nos résultats permettent aussi d'expliquer pourquoi la dégradation d'Hst3 précède le début de la phase S durant laquelle l'acétylation d'H3K56 s'accumule derrière les fourches de réplication afin d'exercer son rôle de mécanisme de défense contre le dommage à l'ADN. De plus, nous avons identifié plusieurs suppresseurs qui permettent de contourner le rôle important d'Hst3 et Hst4 en réponse au dommage à l'ADN. Plusieurs suppresseurs révèlent un lien génétique inattendu entre deux formes abondantes d'acétylation des histones chez Saccharomyces cerevisiae, soit H3K56ac et H4K16ac.
Resumo:
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.
Resumo:
Enfermer le porteur de l’information génétique dans le noyau a obligée la cellule a créé un système de transport complexe, qui permet l’export d’un ARNm du noyau au cytoplasme. Le mécanisme général de l’export des ARNm est encore mal connu, même si les facteurs principaux ont été découverts il y a longtemps. De récents progrès en microscopie nous ont permis d’étudier directement le comportement des ARNm durant le processus d’export. Durant ma maitrise, nous avons été capables de localiser et suivre des ARNm en temps réel pour la première fois chez Saccharomyces cerevisiae. Nous avons créé un gène rapporteur en mettant le gène GLT1 sous le contrôle du promoteur GAL1. Nous avons aussi marqué l’ARNm de GLT1 avec plusieurs boucles PP7. L’ARNm sera visible après l’attachement de plusieurs protéines PP7-GFP aux boucles. En utilisant la technique d’imagerie en cellules vivantes, nous sommes capable de visualiser et suivre chaque ARNm, depuis son relâchement du site de transcription jusqu’à l’export. Une fois relâché du site de transcription, l’ARNm diffuse librement dans le nucléoplasme, mais une fois à la périphérie nucléaire, il commence à « scanner » l’enveloppe nucléaire avant d’être exporté. Nous avons trouvé que le « scanning » dépend de la présence des Myosin Like Proteins (Mlp1p et Mlp2p), protéines qui forment le panier nucléaire, car suite à la délétion de MLP1 et MLP2, les ARNm n’étaient plus capable de « scanner ». Nous avons également trouvé que la partie C-terminale de Mlp1p était nécessaire au « scanning ». De plus, suite à la délétion du gène TOM1, gène codant pour une ubiquitine ligase, les ARNm ont un comportement similaire aux ARNm d’une souche ∆mlp1/mlp2, suggérant que le « scanning » permet à Tom1p d’ubiquitiner Yra1p, ce qui causera son relâchement de l’ARNm. Également, nous avons montré que les ARNm endogènes MDN1 et CBL2 scannent aussi la périphérie nucléaire. Ensemble, nos résultats suggèrent que le scanning est un processus par lequel passent tout les ARNm nucléaire lorsqu’ils se retrouvent à la périphérie du noyau, pour initier plusieurs étapes de réarrangements nécessaires à leurs export. De plus, nous avons examiné le rôle de Yhr127p, une protéine nouvellement identifiée qui se lie à l’ARN. Après avoir marqué cette protéine avec la GFP, nous avons montré qu’elle forme des foci dans le noyau et que ces derniers vont disparaitre suite à l’arrêt de la transcription. La délétion de YHR127 à conduit à une augmentation de la transcription de quelques gènes spécifiques, mais n’affecte pas la capacité de la cellule à exporter les ARNm. Nos résultats suggèrent que cette protéine joue un rôle dans la régulation de la transcription et/ou dans la stabilité de l’ARNm.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.