21 resultados para net zero energy
em Brock University, Canada
Resumo:
Polarized reflectance measurements of the quasi I-D charge-transfer salt (TMTSFh CI04 were carried out using a Martin-Puplett-type polarizing interferometer and a 3He refrigerator cryostat, at several temperatures between 0.45 K and 26 K, in the far infrared, in the 10 to 70 cm- 1 frequency range. Bis-tetramethyl-tetraselena-fulvalene perchlorate crystals, grown electrochemically and supplied by K. Behnia, of dimensions 2 to 4 by 0.4 by 0.2 mm, were assembled on a flat surface to form a mosaic of 1.5 by 3 mm. The needle shaped crystals were positioned parallel to each other along their long axis, which is the stacking direction of the planar TMTSF cations, exposing the ab plane face (parallel to which the sheets of CI04 anions are positioned). Reflectance measurements were performed with radiation polarized along the stacking direction in the sample. Measurements were carried out following either a fast (15-20 K per minute) or slow (0.1 K per minute) cooling of the sample. Slow cooling permits the anions to order near 24 K, and the sample is expected to be superconducting below 1.2 K, while fast cooling yields an insulating state at low temperatures. Upon the slow cooling the reflectance shows dependence with temperature and exhibits the 28 cm- 1 feature reported previously [1]. Thermoreflectance for both the 'slow' and 'fast' cooling of the sample calculated relative to the 26 K reflectance data indicates that the reflectance is temperature dependent, for the slow cooling case only. A low frequency edge in the absolute reflectance is assigned an electronic origin given its strong temperature dependence in the relaxed state. We attribute the peak in the absolute reflectance near 30 cm-1 to a phonon coupled to the electronic background. Both the low frequency edge and the 30 cm-1 feature are noted te shift towards higher frequcncy, upon cntering the superconducting state, by an amount of the order of the expected superconducting energy gap. Kramers-Kronig analysis was carried out to determine the optical conductivity for the slowly cooled sample from the measured reflectance. In order to do so the low frequency data was extrapolated to zero frequency using a Hagen-Ru bens behaviour, and the high frequency data was extended with the data of Cao et al. [2], and Kikuchi et al. [3]. The real part of the optical conductivity exhibits an asymmetric peak at 35 cm-1, and its background at lower frequencies seems to be losing spectral weight with lowering of the temperature, leading us to presume that a narrow peak is forming at even lower frequencies.
Resumo:
Cyanobacteria are able to regulate the distribution of absorbed light energy between photo systems 1 and 2 in response to light conditions. The mechanism of this regulation (the state transition) was investigated in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Three cell types were used: the wild type, psaL mutant (deletion of a photo system 1 subunit thought to be involved in photo system 1 trimerization) and the apcD mutant (a deletion of a phycobilisome subunit thought to be responsible for energy transfer to photo system 1). Evidence from 77K fluorescence emission spectroscopy, room temperature fluorescence and absorption cross-section measurements were used to determine a model of energy distribution from the phycobilisome and chlorophyll antennas in state 1 and state 2. The data confirm that in state 1 the phycobilisome is primarily attached to PS2. In state 2, a portion of the phycobilisome absorbed light energy is redistributed to photo system 1. This energy is directly transferred to photo system 1 by one of the phycobilisome terminal emitters, the product of the apcD gene, rather than via the photo system 2 chlorophyll antenna by spillover (energy transfer between the photo system 2 and photo system 1 chlorophyll antenna). The data also show that energy absorbed by the photo system 2 chlorophyll antenna is redistributed to photo system 1 in state 2. This could occur in one of two ways; by spillover or in a way analogous to higher plants where a segment of the chlorophyll antenna is dissociated from photo system 2 and becomes part of the photo system 1 antenna. The presence of energy transfer between neighbouring photo system 2 antennae was determined at both the phycobilisome and chlorophyll level, in states 1 and 2. Increases in antenna absorption cross-section with increasing reaction center closure showed that there is energy transfer (connectivity) between photosystem 2 antennas. No significant difference was shown in the amount of connectivity under these four conditions.
Resumo:
Phycobilisomes are the major light harvesting complexes for cyanobacteria and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. The phycocyanobilin lyases responsible for chromophorylating the phycocyanin p subunit (CpcB) have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin. 10K absorbance measurements revealed that the energy states of the p phycocyanin chromophores were only subtly shifted; however, 77K steady state fluorescence emission spectroscopy showed excitation energy transfer involving the targeted chromophores to be highly disrupted. Such evidence suggests that phycobilin orientation within the binding domain is specifically modified. We hypothesized that alternate, less specific lyases are able to act on the p binding sites. A phycocyanin linker-polypeptide deficient mutant was similarly characterized. The light state transition, a short term adaptation of the photosynthetic light harvesting apparatus resulting in the redistribution of excitation energy among the photo systems, was shown to be dominated by the reallocation of phycocyanin-absorbed excitation energy. Treatment with a high M phosphate buffer effectively prevented the redistribution of both chlorophyll a- and phycobilisome- absorbed excitation energy, suggesting that the two effects are not strictly independent. The mutant strains required a larger redistribution of excitation energy between light states, perhaps to compensate for their loss in phycobilisome antenna function.
Resumo:
K-(BETS)2FeBr4 is a quasi-2D charge transfer organic metal with interesting electronic and magnetic properties. It undergoes a transition to an antiferromagnetic (AF) state at ambient pressure at the Neel temperature (T^^) = 2.5 K, as well as to a superconducting (SC) state at 1.1 K [1]. The temperature dependence of the electrical resistivity shows a small decrease at T;v indicating the resistivity drops as a result of the onset of the ordering of Fe'*''" spins. A sharp drop in the resistivity at 1.1 K is due to its superconducting transition. The temperature dependence of the susceptibility indicates an antiferromagnetic spin structure with the easy axis parallel to the a-axis. The specific heat at zero-field shows a large peak at about 2.4 K, which corresponds to the antiferromagnetic transition temperature (Tat) and no anomaly is observed around the superconducting transition temperature (1.1 K) demonstrating that the magnetically ordered state is not destroyed by the appearance of another phase transition (the superconducting transition) in the 7r-electron layers [1], [2]. This work presents an investigation of how the low frequency electromagnetic response is affected by the antiferromagnetic and superconducting states, as well as the onset of strong correlation. The location of the easy axis of three samples was determined and polarized thermal reflectance measurements of these «-(BETS)2FeBr4 samples oriented with their vertical axis along the a- and c axes were then carried out using a *He refrigerator cryostat and a Martin-Puplett type polarizing interferometer at various temperatures (T = 0.5 K, 1.4 K. 1.9 K, 2.8 K) above and below the superconducting state and/or antiferromagnetic state. Comparison of the SC state to the normal state along the o- and c-axes indicates a rising thermal reflectance at low frequencies (below 10 cm"' ) which may be a manifestation of the superconducting energy gap. A dip-Hke feature is detected at low frequencies (below 15 cm"') in the thermal reflectance plots which probe the antiferromagnetic state along the two axes, and may be due to the opening of a gap in the excitation spectrum as a result of the antiferromagnetism. In another set of experiments, thermal reflectance measurements carried out along the a- and c-axes at higher temperatures (10 K-80 K) show that the reflectivity decreases with increasing temperature to 60 K (the coherence temperature) above which it increases again. Comparison of the thermal reflectance plots along the a- and c-axes at higher temperatures reveals an anisotropy between these two axes. The Hagen-Rubens thermal reflectance plots corresponding to an average over the ac-plane were calculated using experimental hterature resistivity values. Comparison of the Hagen-Rubens plots with the experimental thermal reflectance along the a- and c-axes indicates that both exhibit the general trend of a decrease in thermal reflectance with increasing frequency, however the calculated Hagen-Rubens thermal reflectance at different temperatures is much lower than the experimental curves.
Resumo:
Expressions for the anharmonic Helmholtz free energy contributions up to o( f ) ,valid for all temperatures, have been obtained using perturbation theory for a c r ystal in which every atom is on a site of inversion symmetry. Numerical calculations have been carried out in the high temperature limit and in the non-leading term approximation for a monatomic facecentred cubic crystal with nearest neighbour c entralforce interactions. The numbers obtained were seen to vary by a s much as 47% from thos e obtai.ned in the leading term approximati.on,indicating that the latter approximati on is not in general very good. The convergence to oct) of the perturbation series in the high temperature limit appears satisfactory.
Resumo:
Exch~nge energy of the He-He system is calculated using the one-density matrix which has been modified according to the supermolecular density formula quoted by Kolos. The exchange energy integrals are computed analytically and by the Monte Carlo method. The results obtained from both ways compared favourably,with the results obtained from the SCF program HONDO
Resumo:
Temperature dependent resistivity, p, magnetic susceptibility, X, and far-infrared reflectance measurements were made on the low Tc superconductor UBe13. Two variants of UBe13 have been proposed, named 'L'- (for low Tc ) and 'H'-type (for high Tc ). Low temperature resistivity measurements confirmed that our sample was of H-type and that the transition temperature was at 0.9 K. This was further confirmed with the observation of this transition in the AC-susceptibility. Low temperature reflectance measurements showed a decrease in the reflectivity as the temperature is lowered from 300 to 10 K, which is in qualitative agreement with the increasing resistivity in this temperature range as temperature is lowered. No dramatic change in the reflectivity was observed between 10 and 0.75 K. A further decrease of the reflectance was observed for the temperature of 0.5 K. The calculated optical conductivity shows a broad minimum near 80 cm-1 below 45 K. Above 45 K the conductivity is relatively featureless. As the temperature is lowered, the optical conductivity decreases. The frequency dependent scattering rate was found to be flat for temperatures between 300 and 45 K. The development of a peak, at around 70 cm-1 was found for temperatures of 45 K and below. This peak has been associated with the energy at which the transition to a coherent state occurs from single impurity scattering in other heavy fermion systems. The frequency dependent mass enhancement coefficient was found to increase at low frequencies as the frequency decreases. Its' magnitude as frequency approaches zero also increased as the temperature decreased.
Resumo:
The thesis presents a comparison of the national energy policies of the Federal Republic of Germany and Canada from 1973 until the late 1980s. The purpose of this paper is to analyze whether economic and/or environmental concerns were responsible for changes in the· West-German and Canadian national energy policies. Furthermore, the feasibility of implementing a soft energy path in West-Germany and Canada is examined. For better comprehension of the policy-making process and implemented changes in the national energy policies of the two states, the West-German and Canadian parliamentary systems and the political cultures were compared. For the analysis, several events with international impact were taken as guidelines. Furthermore, based on statistical data, the West-German and Canadian energy production and consumption were analyzed. With reference to these results the degree of the de facto changes in the national energy policies were analyzed. In addition, the thesis discusses the possibilities which a soft energy path offers to both national governments to renounce themselves from the dependencies on a few energy resources. The thesis reveals that changes in the West-German and Canadian national energy policies, in their energy production and consumption are correlated to various world events. In particular, governmental reponses security of energy supply by the two international oil crises of 1973 and 1979/1980 demonstrate that changes in the West-German and Canadian national energy policies were implemented in reaction to economic concerns than environmental ones. With the policies "away from oil" and "off oil", the West-German and Canadian government implemented the i i substitution of oil through various diverse energy supply resources. However, energy savings concepts and policies were initiated through the first oil crisis in 1973. The world recessions in 1975 and 1982 had no 'profound impacts on the agenda of West-German and Canadian energy policies. As a consequence of the stagnation or the negative growth of the world economic market, changes in their energy production and consumption can be perceived. However, the West-German and Canadian energy production and consumption intensified with the augmentation of the world economy. During the period of study, environmental concerns were taken into account in the energy policy agendas of the Federal Republic of Germany and Canada but they were not of primary concern. wi thin the decade of. the 1980s notably more environmental considerations were taken into account in the energy policies of the two states. The two nuclear reactor accidents in 1979 and 1986 sharpened to various degrees West-German and Canadian public discourse of present energy supply mix and attitude towards energy production and consumption. The statistical data reflects yet no changes in the energy policies in regard to the position of nuclear power. However, in the next several years possible changes can be observed through statistical data, because the planning, the construction and possible phase out of nuclear power requires several years. Finally, the thesis reveals that the implementation of a soft energy path requires profound changes in the consumer behaviour. As several studies indicate, a soft energy path is technological and economically feasible for the Federal Republic of Germany and Canada, its implementation remains to be a political decision.
Resumo:
Thesis (M. Sc.) - Brock University, 1978.
Resumo:
We developed the concept of split-'t to deal with the large molecules (in terms of the number of electrons and nuclear charge Z). This naturally leads to partitioning the local energy into components due to each electron shell. The minimization of the variation of the valence shell local energy is used to optimize a simple two parameter CuH wave function. Molecular properties (spectroscopic constants and the dipole moment) are calculated for the optimized and nearly optimized wave functions using the Variational Quantum Monte Carlo method. Our best results are comparable to those from the single and double configuration interaction (SDCI) method.
Resumo:
The one-electron reduced local energy function, t ~ , is introduced and has the property < tL)=(~>. It is suggested that the accuracy of SL reflects the local accuracy of an approximate wavefunction. We establish that <~~>~ <~2,> and present a bound formula, E~ , which is such that where Ew is Weinstein's lower bound formula to the ground state. The nature of the bound is not guaranteed but for sufficiently accurate wavefunctions it will yield a lower bound. ,-+ 1'S I I Applications to X LW Hz. and ne are presented.
Resumo:
The Energy Dispersive X-ray Diffraction System at Brock University has been used to measure the intensities of the diffraction lines of aluminum powder sample as a function of temperature. At first, intensity measurements at high temperature were not reproducible. After some modifications have been made, we were able to measure the intensities of the diffraction lines to 815K, with good accuracy and reproducibility. Therefore the changes of the Debye-Waller factor from room temperature up to 815K for aluminum were determined with precision. Our results are in good agreement with those previously published.
Resumo:
The optical cross section of PS I in whole cells of Porphyridium cruentum (UTEX 161), held in either state 1 or state 2, was determined by measuring the change in absorbance at 820nm, an indication of P700+; the X-section of PS2 was determined by measuring the variable fluorescence, (Fv-Fo)/Fo, from PS2. Both cross-sections were 7 determined by fitting Poisson distribution equations to the light saturation curves obtained with single turnover laser flashes which varied in intensity from zero to a level where maximum yield occurred. Flash wavelengths of 574nm, 626nm, and 668nm were used, energy absorbed by PBS, by PBS and chla, and by chla respectively. There were two populations of both PSi and PS2. A fraction of PSi is associated with PBS, and a fraction of PS2 is free from PBS. On the transition S1->S2, only with PBS-absorbed energy (574nm) did the average X-section of PSi increase (27%), and that of PS2 decrease (40%). The fraction of PSi associated with PBS decreased, from 0.65 to 0.35, and the Xsection of this associated PS 1 increased, from 135±65 A2 to 400±300A2. The cross section of PS2 associated with PBS decreased from 150±50 A2 to 85±45 A2, but the fraction of PS2 associated with PBS, approximately 0.75, did not change significantly. The increase in PSi cross section could not be completely accounted for by postulating that several PSi are associated with a single PBS and that in the transition to state2, fewer PSi share the same number of PBS, resulting in a larger X-section. It is postulated that small changes occur in the attachment of PS2 to PBS causing energy to be diverted to the attached PSi. These experiments support neither the mobile-PBS model of state transitions nor that of spillover. From cross section changes there was no evidence of energy transfer from PS2 to PSi with 668nm light. The decrease in PS2 fluorescence which occurred at this wavelength cannot be explained by energy transfer; another explanation must be sought. No explanation was found for an observed decrease in PSi yield at high flash intensities.
Resumo:
A new approach to treating large Z systems by quantum Monte Carlo has been developed. It naturally leads to notion of the 'valence energy'. Possibilities of the new approach has been explored by optimizing the wave function for CuH and Cu and computing dissociation energy and dipole moment of CuH using variational Monte Carlo. The dissociation energy obtained is about 40% smaller than the experimental value; the method is comparable with SCF and simple pseudopotential calculations. The dipole moment differs from the best theoretical estimate by about 50% what is again comparable with other methods (Complete Active Space SCF and pseudopotential methods).
Resumo:
Using the energy dispersive x ...ray diffraction (EDXD) technique, the room temperature diffraction pattern of Al powder was obtained at diffraction angles ~ 30° and 50°. From the small angle diffraction pattern the average relative intensities (IR) of the (111), (200), and (220) lines were measured to be equal to 100, 62, and 32 respectively. From the large diffraction angle IR for the (220), (311+222), (400), (331+420), and (422) lines were measured to be 100,201,17,90, and 19.5 respectively. The diffraction pattern at those two angles were obtained at several higher temperatures to measure the change in the intensities of the Al lines. From the intensity changes the increase of the Debye- Waller temperature factor, i.e ~B(T), with respect to the value at room temperature was determined to be 0.6+0.1 at 250°C, 1.10+0.15 at 350°C, 1.45+0.20 at 450°C, and 2.20±0.35 at 550°C.