9 resultados para fermentation technique
em Brock University, Canada
Resumo:
The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii
Resumo:
Icewine is an intensely s\veet dessert \vine fermented from the juice of naturally frozen grapes. Icewine fermentation poses many challenges such as failure to reach desired ethanol levels and production of high levels of volatile acidity in the fonn of acetic acid. This study investigated the impact of micronutrient addition (GO-FERM® and NATSTEP®) during the rehydration stage of the commercial \vine yeast Saccharomyces cerevisiae KI-VIII6 during Ice\vine fermentation. Sterile-filtered and unfiltered Riesling Ice\vine juice was inoculated \vith yeast rehydrated under four different conditions: in water only; with GO-FERM®; with NATSTEP®; or the combination of both micronutrient products in the rehydration water. Using sterile-filtered Icewine juice, yeast rehydration had a positive impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. In the sterile-filtered fermentation, yeast rehydrated with micronutrients generated 9-times less acetic acid per gram of sugar in the first 48 hours compared to yeast rehydrated only \vith water and resulted in a 17% reduction in acetic acid in the final \vine \vhen normalized to sugar consumed. However, the sterile-filtered fermentations likely became stuck due to the overc1arification of the juice as evidenced from the low sugar consumption (117 gIL) that could not be completely overcome by the micronutrient treatments (144 gIL sugar consumed) to reach a target ethanol of IO%v/v. Contrary to \vhat \vas observed in the sterile-filtered treatements, using unfiltered Ice\vine juice, yeast micronutrient addition had no significant impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. However, in the unfiltered fermentation, micronutrient addition during yeast rehydration caused a reduction in the acetic acid produced as a function of sugar consumed up to 150 giL sugar consumed.. In contrast to the sterile-filtered fermentations, the unfiltered fermentations did not become stuck as evidenced from the higher sugar consumption (l47-174g1L). The largest effects of micronutrient addition are evident in the first two days of both sterile and unfiltered fermentations.
Resumo:
Icewine is an intensely sweet, unique dessert wine fennented from the juice of grapes that have frozen naturally on the vine. The juice pressed from the frozen grapes is highly concentrated, ranging from a minimum of 35° Brix to approximately 42° Brix. Often Icewine fennentations are sluggish, taking months to reach the desired ethanol level, and sometimes become stuck. In 6 addition, Icewines have high levels of volatile acidity. At present, there is no routine method of yeast inoculation for fennenting Icewine. This project investigated two yeast inoculum levels, 0.2 gIL and 0.5 gIL. The fennentation kinetics of inoculating these yeast levels directly into the sterile Icewine juice or conditioning the cells to the high sugar levels using a step wise acclimatization procedure were also compared. The effect of adding GO-FERM, a yeast nutrient, was also assessed. In the sterile fennentations, yeast inoculated at 0.2 gIL stopped fennenting before the required ethanol level was achieved, producing only 7.8% (v/v) and 8.1 % (v/v) ethanol for the direct and conditioned inoculations, respectively. At 0.5 gIL, the stepwise conditioned cells fennented the most sugar, producing 12.2% (v/v) ethanol, whereas the direct inoculum produced 10.5% (v/v) ethanol. The addition of the yeast nutrient GO-FERM increased the rate of biomass accumulation, but reduced the ethanol concentration in wines fennented at 0.5 gIL. There was no significant difference in acetic acid concentration in the final wines across all treatments. Fennentations using unfiltered Icewine juice at the 0.5 gIL inoculum level were also compared to see if the effects of yeast acclimatization and micronutrient addition had the same impact on fennentation kinetics and yeast metabolite production as observed in the sterile-filtered juice fennentations. In addition, a full descriptive analysis of the finished wines was carried out to further assess the impact of yeast inoculation method on Icewine sensory quality. At 0.5 gIL, the stepwise conditioned cells fennented the most sugar, producing 11.5% (v/v) ethanol, whereas the direct inoculum produced 10.0% (v/v) ethanol. The addition of the yeast nutrient GO-FERM increased the peak viable cell numbers, but reduced the ethanol concentration in wines fennented at 0.5 gIL. There was a significant difference 7 in acetic acid concentration in the final wines across all treatments and all treatments affected the sensory profiles of the final wines. Wines produced by direct inoculation were described by grape and raisin aromas and butter flavour. The addition of GO-FERM to the direct inoculation treatment shifted the aroma/flavour profiles to more orange flavour and aroma, and a sweet taste profile. StepWise acclimatizing the cells resulted in wines described more by peach and terpene aroma. The addition of GO-FERM shifted the profile to pineapple and alcohol aromas as well as alcohol flavour. Overall, these results indicate that the addition of GO-FERM and yeast acclimatization shortened the length of fermentation and impacted the sensory profiles of the resultant wines.
A biochemical predictor of performance during mesophilic anaerobic fermentation of starch wastewater
Resumo:
The aim of this study was to determine the potential of biochemical parameters, such as enzyme activity and adenosine triphosphate (ATP) levels, as monitors of process performance in the Upflow Anaerobic Sludge Blanket (UASB) reactor utilizing a starch wastewater. The acid and alkaline phosphatase activity and the ATP content of the UASB sludge were measured in response to changes in flow rate and nutrient loading. Conventional parameters of process performance, such as gas production, acetic acid production, COD, phosphorus, nitrogen and suspended solids loadings and % COD removal were also monitored. The response of both biochemical and conventional parameters to changing process conditions was then compared. Alkaline phosphatase activity exhibited the highest activity over the entire study perioda A high suspended solids loading was observed to upset the system in terms of gas production, acetic acid production and % COD removala The initial rate of increase in alkaline phosphatase activity following an increase in loading was four times as great during process upset than under conditions of good performance. The change in enzyme actiVity was also more sensitive to process upset than changes in acetic acid production. The change in ATP content of the sludge with time suggested that enzyme actiVity was changing independently of the actual viable biomass present. The bacterial composition of the anaerobic sludge granules was similar to that of other sludge bed systems, at the light and scanning electron microscope level. Isolated serum bottle cultures produced several acids involved in anaerobic carbohydrate metabolism. The overall performance of the UASB system indicated that higher loadings of soluble nutrients could have been tolerated by the system.
Resumo:
The optical conductivity of the Anderson impurity mode l has been calculated by emp l oying the slave boson technique and an expansion in powers of l i N, where N is the d egeneracy o f the f electron level . This method has been used to find the effective mass of the conduction electrons for temperatures above and below the Kondo tempera ture. For low temperatures, the mass enhancement is f ound to be large while a t high t emperatures, the mass enhancement is sma ll. The conductivity i s f ound to be Drude like with frequency dependent effective mass and scattering time for low independent effective mass and temperatures and scattering time f requency for high t emperatures. The behavior of both the effective mass and the conductivity is in qualitative agreement with experimental r esul t s .
Resumo:
This study examined whether or not students with learning disabilities could effectively use a question and answer strategy known as elaborative interrogation. This technique involved students answering why they thought facts based on familiar animal stories were true. Thirty students from a provincial demonstration high school (for students with learning disabilities) were assigned to one of two study conditions, (a) elaborative interrogation or (b) reading for understanding. Three students, one from the experimental condition and two from the control did not complete the study. Both conditions required that the students learn 36 facts concerning six familiar animals. Immediately following the study session the students completed a free-recall test, a matched association test and a questionnaire regarding their perceived difficulty of the animal stories. After 30 days a matched association test was completed. The oneway ANOVA, 2 x 2 split plot ANOVA and Tukey's Honestly Significant Test were used to determine significance. There was no significant difference in the two conditions for free recall retention. There were significant differences in the elaborative interrogation condition for the immediate matched association test and for the 30-day matched association test. The probability of the students' responses in the elaborative interrogation were measured to determine the effects of adequate responses on long-term retention. It was found that the adequate responses were more likely to promote retention than inadequate responses. In conclusion, long-term retention of factual information was significantly better in the elaborative interrogation condition in comparison to the reading for understanding control. For future research, the dependent measure, free recall should be given both verbally and in written format. In addition, extra time should be allowed for processing of the new information to occur.
Resumo:
This work includes two major parts. The first part of the work concentrated on the studies of the application of the highperfonnance liquid chromatography-particle beam interface-mass spectrometry system of some pesticides. Factors that have effects on the detection sensitivity were studied. The linearity ranges and detection limits of ten pesticides are also given in this work. The second part of the work concentrated on the studies of the reduction phenomena of nitro compounds in the HPLC-PB-MS system. Direct probe mass spectrometry and gas chromatography-mass spectrometry techniques were also used in the work. Factors that have effects on the reduction of the nitro compounds were studied, and the possible explanation is proposed. The final part of this work included the studies of reduction behavior of some other compounds in the HPLC-PB-MS system, included in them are: quinones, sulfoxides, and sulfones.
Resumo:
The Energy Dispersive X-ray Diffraction System at Brock University has been used to measure the intensities of the diffraction lines of aluminum powder sample as a function of temperature. At first, intensity measurements at high temperature were not reproducible. After some modifications have been made, we were able to measure the intensities of the diffraction lines to 815K, with good accuracy and reproducibility. Therefore the changes of the Debye-Waller factor from room temperature up to 815K for aluminum were determined with precision. Our results are in good agreement with those previously published.
Resumo:
Using the energy dispersive x ...ray diffraction (EDXD) technique, the room temperature diffraction pattern of Al powder was obtained at diffraction angles ~ 30° and 50°. From the small angle diffraction pattern the average relative intensities (IR) of the (111), (200), and (220) lines were measured to be equal to 100, 62, and 32 respectively. From the large diffraction angle IR for the (220), (311+222), (400), (331+420), and (422) lines were measured to be 100,201,17,90, and 19.5 respectively. The diffraction pattern at those two angles were obtained at several higher temperatures to measure the change in the intensities of the Al lines. From the intensity changes the increase of the Debye- Waller temperature factor, i.e ~B(T), with respect to the value at room temperature was determined to be 0.6+0.1 at 250°C, 1.10+0.15 at 350°C, 1.45+0.20 at 450°C, and 2.20±0.35 at 550°C.