13 resultados para TUTELAGE OF ACTION
em Brock University, Canada
Resumo:
Neuropeptides are the largest group of signalling chemicals that can convey the information from the brain to the cells of all tissues. DPKQDFMRFamide, a member of one of the largest families of neuropeptides, FMRFamide-like peptides, has modulatory effects on nerve-evoked contractions of Drosophila body wall muscles (Hewes et aI.,1998) which are at least in part mediated by the ability of the peptide to enhance neurotransmitter release from the presynaptic terminal (Hewes et aI., 1998, Dunn & Mercier., 2005). However, DPKQDFMRFamide is also able to act directly on Drosophila body wall muscles by inducing contractions which require the influx of extracellular Ca 2+ (Clark et aI., 2008). The present study was aimed at identifying which proteins, including the membrane-bound receptor and second messenger molecules, are involved in mechanisms mediating this myotropic effect of the peptide. DPKQDFMRFamide induced contractions were reduced by 70% and 90%, respectively, in larvae in which FMRFamide G-protein coupled receptor gene (CG2114) was silenced either ubiquitously or specifically in muscle tissue, when compared to the response of the control larvae in which the expression of the same gene was not manipulated. Using an enzyme immunoassay (EIA) method, it was determined that at concentrations of 1 ~M- 0.01 ~M, the peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. In addition, the physiological effect of DPKQDFMRFamide at a threshold dose was not potentiated by 3-lsobutyl-1-methylxanthine, a phosphodiesterase inhibitor, nor was the response to 1 ~M peptide blocked or reduced by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. The response to DPKQDFMRFamide was not affected in the mutants of the phosholipase C-~ (PLC~) gene (norpA larvae) or IP3 receptor mutants, which suggested that the PLC-IP3 pathway is not involved in mediat ing the peptide's effects. Alatransgenic flies lacking activity of calcium/calmodul in-dependent protein kinase (CamKII showed an increase in muscle tonus following the application of 1 JlM DPKQDFMRFamide similar to the control larvae. Heat shock treatment potentiated the response to DPKQDFMRFamide in both ala1 and control flies by approximately 150 and 100 % from a non heat-shocked larvae, respectively. Furthermore, a CaMKII inhibitor, KN-93, did not affect the ability of peptide to increase muscle tonus. Thus, al though DPKQDFMRFamide acts through a G-protein coupled FMRFamide receptor, it does not appear to act via cAMP, cGMP, IP3, PLC or CaMKl1. The mechanism through which the FMRFamide receptor acts remains to be determined.
Resumo:
Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.
Resumo:
Each year, the College of Nurses of Ontario (CNO) requires all registered nurses and registered practical nurses in Ontario to complete a Reflective Practice learning activity. In doing so, nurses are expected to perform a self- assessment, identify a practice problem or issue, create and implement a personal learning plan, and evaluate the learning and outcomes accomplished. The process and components of CNO's Reflective Practice program are very similar to an Action Learning activity. The purpose of this qualitative research was to explore the perceptions of 1 1 nurses who completed at least 1 Action Learning activity. Data analysis of their comments provided insight into their perceptions of the Action Learning experience, perceptions of the negative and positive characteristics of various activities within the Action Learning process, and perceptions of barriers or challenges within this experience. The author concluded that participants perceived their Action Learning activities to be a positive experience because the process focused on practice problems and issues, enhanced thinking about practice problems, and achieved practice-relevant outcomes. However, the results indicated that self-directed learning and journal writing were difficult activities for some participants, and some experienced negative emotional responses during reflection. The research concluded that barriers to implementation of Action Learning include a lack of understanding of the process and a perceived lack of support from employers.
Resumo:
Making it "Click": Collaborative Perceptions ofCreative Practice in Art Education examined the teaching practice of 6 art educators who conducted their work through the Niagara Falls Art Gallery's (NFAG) in-schools and Children's Museum programmes. These community resources service the elementary levels of participatory Public, Catholic and French schools in the Niagara Peninsula. The goal of this research was to find ways in which these teachers could explore their creative potential as art educators. The "click," a term introduced by participants indicating the coming together of all positive factors towards creativity, became the central theme behind this study. Research revealed that the effective creative process was not merely a singular phase, but rather a series of 4 processes: 1 , gathering knowledge; 2, intuitive and experiential; 3, the informal presentation of information in which creativity as a process was explored; and 4, formal presentation that took the analysis of information to a deeper, holistic level. To examine the ways in which experience and knowledge could be shared and brought together through a collaborative process, this study employed data collection that used literature research, interviews, focus group discussions, and personal journal entries. Follow-up discussions that assessed the effectiveness of action research, took place VA months after the initial meetings. It is hoped that this study might assist in creative educational practices, for myself as a member of the NFAG teaching team, for colleagues in the art programmes, art educators, and other teachers in the broader disciplines of education.
Resumo:
This qualitative study examines the phenomenon of discreet dissension in the administration of academe through literature review and the focused reflections of retired, senior administrators of postsecondary institutions in Ontario. Discretionary decision making is a large component of senior administrative positions. At times, senior administrators use their discretion to engage in institutionally endorsed behaviour to fulfill institutionally sanctioned objectives. At other times, senior administrators use their discretion to engage in dissenting courses of action, contrary to the prescribed and codified policies, procedures, and norms of the institution in order to achieve institutionally endorsed objectives and/or to achieve objectives congruent with individual values. Discreet dissension emerges as an administrative activity for further investigation, enhancing the understanding of the art of administration.
Resumo:
Low levels of ionizing radiation induce two translocation responses in soybean: a reduction in photoassimilate export from leaves and a change in the distribution pattern of exported photoassimilate within the plant. In this investigation these responses have been further studied specifically to ascertain the site of radiation damage and to better understand the physiological responses observed. Experimentally the primary data was obtained from studies in which a mature trifoliate leaf of a young soybean plant (Glycine ~ L. cultivar Harosoy '63) is isolated in a closed transparent chamber and allowed to photoassimilate 14C02 for 15 minutes. This is followed by an additional 45 ~_il'1;ute period before the plant is sectl.o ne d an d 14 C-ra dl' oactl.v.l ty d eterml. ne d'l n a 11 parts. Such 14c data provides one with the magnitude and distribution pattern of translocation. Further analyses were conducted to determine the relative levels of the major photosynthetic products using the techniques of paper chromatography and autoradiography. Since differences between control and irradiated P 1 ants were not 0 b serve d l' n t h e par tl't"lo nlng 0 f 14 C between the 80% ethanol-soluble and -insoluble fractions 14 or in the relative amounts of C-products of photosynthesis, the reduction in export in irradiated plants is not likely due to reduced availability of translocatable materials. Data presented in this thesis shows that photoassimilate export was not affected by gamma radiation until a threshold dose between 2.0 and 3.0 krads was reached. It was also observed that radiation-induced damage to the export process was capable of recovery in a period of 1 to 2 hours provided high light intensity was supplied. In contrast, the distribution pattern was shown to be extremely radiosensitive with a low threshold dose between .25 and .49 krads. Although this process was also capable of recovery,lt" occurred much earlier and was followed by a secondary effect which lasted at least for the duration of the experiments. The data presented in this thesis is interpreted to suggest that the sites of radiation action for the two translocation responses are different. In regards to photoassimilate export, the site of action of ionizing radiation is the leaf, quite possibly the process of photophosphorylation which may provide energy directly for phloem loading and for membrane integrity of the phloem tissue* In regards to the pattern of distribution of exported photoassimilate, the site is likely the apical sink, possibly the result of changes of levels of endogenous hormones. By the selection of radiation exposure dose and time post-irradiation, it is possible to affect independently these two processes suggesting that each may be regulated independent of the other and involves a distinct site.
Resumo:
The St. Catharines and District Council of Women was founded in 1918 and elected as its first president, Mary Malcolmson. In 1910 Mrs. Malcolmson founded North America’s first Girl Guide Association in St. Catharines. The aim of the organization was to work for the betterment of conditions pertaining to the family, community and state. The Council is an umbrella group for various women’s organizations in the area and functions at the provincial, national and international levels and is associated with the United Nations. In the early years the National Council brought in the Victorian Order of Nurses (VON) and started the Women’s Canadian Club. The St. Catharines Council initiated Child Welfare Centres in local churches that grew into the Well Baby Clinics. Women were encouraged to take political office and join committees with much success. In 1929, “Shop at Home” exhibition became an annual event highlighting the services of local merchants. Money raised by the Council was donated to local charities and in 1930 the Council assisted the local Armenian community in building the first Armenian Church in Canada. In 1932 the Council started the Maternal Welfare programme in which Mothers’ Meetings were held weekly with various speakers from the Public Health Department. In 1975 to celebrate International Women’s Year and the 1976 Centennial of the City of St. Catharines, the group sponsored the book Women of Action, 1876-1976, written by two of its members, Lily M. Bell and Kathleen E. Bray. Some time after 1976 the name of the organization changed from St. Catharines Local Council of Women to St. Catharines and District Council of Women. Today the organization functions as an advocacy and educational group.
Resumo:
Resveratrol, a polyphenol found in red wine, has been reported to have
antithrombotic, antiatherogenic, and anticancer properties both in vitro and III VIVO.
However, possible antidiabetic properties of resveratrol have not been examined. The
objective of this study was to investigate the direct effects of resveratrol on basal and
insulin-stimulated glucose uptake and to elucidate its mechanism of action in skeletal
muscle cells. In addition, the effects of resveratrol on basal and insulin- stimulated amino
acid transport and mitogenesis were also examined.
Fully differentiated L6 rat skeletal muscle cells were incubated with resveratrol
concentrations ranging from 1 to 250 IlM for 15 to 120 min. Maximum stimulation, 201
± 8.90% of untreated control, (p<0.001), of2eH] deoxy- D- glucose (2DG) uptake was
seen with 100 IlM resveratrol after 120 min. Acute, 30 min, exposure of the cells to 100
nM insulin stimulated 2DG uptake to 226 ± 12.52% of untreated control (p<0.001). This
appears to be a specific property of resveratrol that is not shared by structurally similar
antioxidants such as quercetin and rutin, both of which did not have any stimulatory
effect. Resveratrol increased the response of the cells to submaximal insulin
concentrations but did not alter the maximum insulin response. Resveratrol action did not
require insulin and was not blocked by the protein synthesis inhibitor cycloheximide.
L Y294002 and wortmannin, inhibitors of PI3K, abolished both insulin and resveratrolstimulated
glucose uptake while phosphorylation of AktlPKB, ERK1I2, JNK1I2, and p38
MAPK were not increased by resveratrol. Resveratrol did not stimulate GLUT4
transporter translocation in GLUT4cmyc overexpressing cells, in contrast to the
significant translocation observed with insulin. Furthermore, resveratrol- stimulated glucose transport was not blocked by the presence of the protein kinase C (PKC)
inhibitors BIMI and G06983. Despite that, resveratrol- induced glucose transport
required an intact actin network, similar to insulin.
In contrast to the stimulatory effect seen with resveratrol for glucose transport,
e4C]methylaminoisobutyric acid (MeAIB) transport was inhibited. Significant reduction
of MeAIB uptake was seen only with 100uM resveratrol (74.2 ± 6.55% of untreated
control, p<0.05), which appeared to be maximum. In parallel experiments, insulin (100
nM, 30 min) increased MeAIB transport by 147 ± 5.77% (p<0.00l) compared to
untreated control. In addition, resveratrol (100 JlM, 120 min) completely abolished
insulin- stimulated amino acid transport (103 ± 7.35% of untreated control,p>0.05).
Resveratrol also inhibited cell proliferation in L6 myoblasts with maximal
inhibition of eH]thymidine incorporation observed with resveratrol at 50 J.LM after 24
hours (8 ± 1.59% of untreated control, p
Resumo:
The Active Isolated Stretching (AIS) technique proposes that by contracting a muscle (agonist) the opposite muscle (antagonist) will relax through reciprocal inhibition and lengthen without increasing muscle tension (Mattes, 2000). The clinical effectiveness of AIS has been reported but its mechanism of action has not been investigated at the tissue level. Proposed mechanisms for increased range of motion (ROM) include mechanical or neural changes, or an increased stretch tolerance. The purpose of the study was to investigate changes in mechanical properties, i.e. stiffness, of skeletal muscle in response to acute and long-term AIS stretching for the hamstring muscle group. Recreationally active university-aged students (female n=8, male n=2) classified as having tight hamstrings, by a knee extension test, volunteered for the study. All stretch procedures were performed on the right leg, with the left leg serving as a control. Each subject was assessed twice: at an initial session and after completing a 6-week AIS hamstring stretch training program. For both test sessions active knee extension (ROM) to a position of "light irritation", passive resisted torque and stiffness were determined before and after completion of the AIS technique (2x10 reps). Data were collected using a Biodex System 3 Pro (Biodex Medical Systems, NY, USA) isokinetic dynamometer. Surface electromyography (EMG) was used to monitor vastus lateralis (VL) and hamstring muscle activity during the stretching movements. Between test sessions, 2x10 reps of the AIS bent knee hamstring stretch were performed daily for 6-weeks.
Resumo:
This thesis explored the development of several methodologies for the stereoselective construction of ligand frameworks and some of their applications. The first segment concerns the application of an enantioselective lithiation at an Sp3_ hybridized position adjacent to nitrogen by means of the widely used and typically highly effective enantioselective lithiation with ( -)-sparteine. This investigation was intended to develop a method to install chirality into a system that would be converted into a family of diaminoylidenes for use as phosphine mimics in transition metal catalysis or as nucleophilic reagents. Molecular modeling of the system revealed some key interactions between the substrate and (-)-sparteine that provided general insight into the diamine's mode of action and should lend some predictive value to its future applications. The second portion focuses on the development of methods to access 1,2- disubstituted aminoferrocenes, an underexplored class of metallocenes possessing planar chirality. Two routes were examined involving a diastereoselective and an enantioselective pathway, where the latter method made use of the first BF3-mediated lithiation-substitution to install planar chirality. Key derivatives such as 1,2- aminophosphines, made readily accessible by the new route, were evaluated as ligands for Pd(II), Pt(II) and Ir(I). These complexes show activity in a number of transformations with both achiral and prochiral substrates. Optimization experiments were conducted to prepare enantiomerically enriched 2-substituted-I-aminoferrocenes by direct asymmetric lithiation of BF3-coordinated tertiary aminoferrocenes. A predictive computational model describing the transition state of this reaction was developed in collaboration with Professor Travis Dudding's group (Department of Chemistry, Brock University). The predicted stereochemistry of the process was confirmed by single-crystal X-ray analysis of a 2-phosphino-l-dimethylaminoferrocene derivative. Enantiomerically pure samples of the aminophosphine ligands derived from this new process have given promising preliminary results in the enantioselective hydrogenation of prochiral alkenes and warrant further stUdy in metal-mediated catalysis.
Resumo:
Chlorhexidine is an effective antiseptic used widely in disinfecting products (hand soap), oral products (mouthwash), and is known to have potential applications in the textile industry. Chlorhexidine has been studied extensively through a biological and biochemical lens, showing evidence that it attacks the semipermeable membrane in bacterial cells. Although extremely lethal to bacterial cells, the present understanding of the exact mode of action of chlorhexidine is incomplete. A biophysical approach has been taken to investigate the potential location of chlorhexidine in the lipid bilayer. Deuterium nuclear magnetic resonance was used to characterize the molecular arrangement of mixed phospholipid/drug formulations. Powder spectra were analyzed using the de-Pake-ing technique, a method capable of extracting both the orientation distribution and the anisotropy distribution functions simultaneously. The results from samples of protonated phospholipids mixed with deuterium-labelled chlorhexidine are compared to those from samples of deuterated phospholipids and protonated chlorhexidine to determine its location in the lipid bilayer. A series of neutron scattering experiments were also conducted to study the biophysical interaction of chlorhexidine with a model phospholipid membrane of DMPC, a common saturated lipid found in bacterial cell membranes. The results found the hexamethylene linker to be located at the depth of the glycerol/phosphate region of the lipid bilayer. As drug concentration was increased in samples, a dramatic decrease in bilayer thickness was observed. Differential scanning calorimetry experiments have revealed a depression of the DMPC bilayer gel-to-lamellar phase transition temperature with an increasing drug concentration. The enthalpy of the transition remained the same for all drug concentrations, indicating a strictly drug/headgroup interaction, thus supporting the proposed location of chlorhexidine. In combination, these results lead to the hypothesis that the drug is folded approximately in half on its hexamethylene linker, with the hydrophobic linker at the depth of the glycerol/phosphate region of the lipid bilayer and the hydrophilic chlorophenyl groups located at the lipid headgroup. This arrangement seems to suggest that the drug molecule acts as a wedge to disrupt the bilayer. In vivo, this should make the cell membrane leaky, which is in agreement with a wide range of bacteriological observations.
Resumo:
This paper captured our joint journey to create a living educational theory of knowledge translation (KT). The failure to translate research knowledge to practice is identified as a significant issue in the nursing profession. Our research story takes a critical view of KT related to the philosophical inconsistency between what is espoused in the knowledge related to the discipline of nursing and what is done in practice. Our inquiry revealed “us” as “living contradictions” as our practice was not aligned with our values. In this study, we specifically explored our unique personal KT process in order to understand the many challenges and barriers to KT we encountered in our professional practice as nurse educators. Our unique collaborative action research approach involved cycles of action, reflection, and revision which used our values as standards of judgment in an effort to practice authentically. Our data analysis revealed key elements of collaborative reflective dialogue that evoke multiple ways of knowing, inspire authenticity, and improve learning as the basis of improving practice related to KT. We validated our findings through personal and social validation procedures. Our contribution to a culture of inquiry allowed for co-construction of knowledge to reframe our understanding of KT as a holistic, active process which reflects the essence of who we are and what we do.
Resumo:
The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.