12 resultados para Photoinduced CS in Molecular system
em Brock University, Canada
Resumo:
This work includes two major parts. The first part of the work concentrated on the studies of the application of the highperfonnance liquid chromatography-particle beam interface-mass spectrometry system of some pesticides. Factors that have effects on the detection sensitivity were studied. The linearity ranges and detection limits of ten pesticides are also given in this work. The second part of the work concentrated on the studies of the reduction phenomena of nitro compounds in the HPLC-PB-MS system. Direct probe mass spectrometry and gas chromatography-mass spectrometry techniques were also used in the work. Factors that have effects on the reduction of the nitro compounds were studied, and the possible explanation is proposed. The final part of this work included the studies of reduction behavior of some other compounds in the HPLC-PB-MS system, included in them are: quinones, sulfoxides, and sulfones.
Resumo:
Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.
Resumo:
The molecular events after spinal cord injury that lead to the establishment of a permissive environment and epimorphic regeneration remain unclear. Two molecular pathway regulators that may converge to create a spinal cord regeneration-permissive environment in the urodele are retinoic acid (RA) and microRNAs (miRNAs). Recent evidence suggests that RARβ-mediated signaling is necessary for tail and caudal spinal cord regeneration in the adult newt. MicroRNAs are attractive candidates as mediators of retinoid signaling during regeneration, as their pleiotropic effects are vital in situations where global changes in gene expression are required. Thus, the overall aim of this thesis was to determine if miRNAs are involved in tail and caudal spinal cord regeneration in the adult newt, and if they act as regulators and/or effectors of retinoid signaling during this process. I have demonstrated here, for the first time, that multiple miRNAs are dysregulated in response to spinal cord injury in the adult newt, as well as in response to inhibition of retinoid signaling. Two of these miRNAs, miR-133a and miR-1, appear to target RARβ2 transcripts both in vivo and in vitro. Inhibition of RA signaling via RARβ with a selective antagonist, LE135, alters the pattern of expression of these miRNAs, which leads to an inhibition of tail regeneration. These data are indicative of a negative feed back loop, albeit potentially an indirect one. I also aimed to examine which miRNAs are affected by inhibiting RA synthesis during regeneration, and provided a long list of miRNAs that are dysregulated. These data provide the foundation for future studies on the putative roles of these miRNAs, as well as their function in retinoid signaling. Overall, these studies provide the first evidence for a role for miRNAs as mediators of retinoid signaling during caudal spinal cord regeneration in any system.
Resumo:
Cyanobacteria are able to regulate the distribution of absorbed light energy between photo systems 1 and 2 in response to light conditions. The mechanism of this regulation (the state transition) was investigated in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Three cell types were used: the wild type, psaL mutant (deletion of a photo system 1 subunit thought to be involved in photo system 1 trimerization) and the apcD mutant (a deletion of a phycobilisome subunit thought to be responsible for energy transfer to photo system 1). Evidence from 77K fluorescence emission spectroscopy, room temperature fluorescence and absorption cross-section measurements were used to determine a model of energy distribution from the phycobilisome and chlorophyll antennas in state 1 and state 2. The data confirm that in state 1 the phycobilisome is primarily attached to PS2. In state 2, a portion of the phycobilisome absorbed light energy is redistributed to photo system 1. This energy is directly transferred to photo system 1 by one of the phycobilisome terminal emitters, the product of the apcD gene, rather than via the photo system 2 chlorophyll antenna by spillover (energy transfer between the photo system 2 and photo system 1 chlorophyll antenna). The data also show that energy absorbed by the photo system 2 chlorophyll antenna is redistributed to photo system 1 in state 2. This could occur in one of two ways; by spillover or in a way analogous to higher plants where a segment of the chlorophyll antenna is dissociated from photo system 2 and becomes part of the photo system 1 antenna. The presence of energy transfer between neighbouring photo system 2 antennae was determined at both the phycobilisome and chlorophyll level, in states 1 and 2. Increases in antenna absorption cross-section with increasing reaction center closure showed that there is energy transfer (connectivity) between photosystem 2 antennas. No significant difference was shown in the amount of connectivity under these four conditions.
Resumo:
Four staircase lakes occupying a single watershed located in the Algoma District, north of Lake Superior were chosen for this study. I examined the subfossil diatom assemblage in the top twenty centimeters of the surface sediments in each of these four lakes in an attempt to reconstruct their respective past pH history. From these analyses it was possible to test the hypothesis that the rate of change of diatom inferred pH was not significantly different in lakes located one below the other in a single "staircase" within a single watershed system. My results indicated that the four Z lakes had been acid for at least the last century. The water color of the three upper Z lakes (Z1, Z2 and Z3) was brown (>30 Pt Co units). The bottom lake (Z4) was the only clear water lake in the system «5 Pt Co units). This bottom staircase lake had no muskeg development around its shoreline. The alkaliphilous diatoms in the Z watershed system were important in determining the diatom inferred pH of the four Z lakes. The centric diatoms were extremely rare in the clearwater bottom lake (Z4). The ecology of the Eupodiscales is perhaps important in the interpretation of sediment in the more acid environment. Lake Z4 was the only one that had a progressive as well as a significant decrease in its downcore diatom inferred pH since the early 1960's. This lead me to speculate that the humic substances present in the upper three brown water lakes (Z1, Z2 and Z3) were perhaps Important in buffering them against a further decrease in water pH even though they were located within an area which was sensitive to acid precipitation.
Resumo:
Addition of L-glutamate caused alkalinization of the medium surrounding Asparagus spreng.ri mesophyll cells. This suggests a H+/L-glutmate symport uptake system for L-glutamate. However stoichiometries of H+/L-glutamate symport into Asparagus cells were much higher than those in other plant systems. Medium alkalinization may also result from a metabolic decarboxylation process. Since L-glutmate is decarboxylated to r-amino butyric acid (SABA) in this system, the origin of medium alkalinization was reconsidered. Suspensions of mechanically isolated and photosyntheically competent Asparagus sprengeri mesophyll cells were used to investigate the H+/L-glutamate symport system, SABA production, GABA transport, and the origin of L-glutamate dependent medium alkalinization. The major results obtained are summarized as follows: 1. L-Glutamate and GABA were the second or third most abundant amino acids in these cells. Cellular concentrations of L-glutamate were 1.09 mM and 1.31 mM in the light and dark, respectively. Those of SABA were 1.23 mM and 1.17 mM in the light and dark, respectively. 2. Asparagine was the most abundant amino acid in xylem sap and comprised 54 to 68 1. of the amino acid pool on a molar basis. GABA was the second most abundant amino acid and represented 10 to 11 1. of the amino acid pool. L-Slutamate was a minor component. 3. A 10 minute incubation with 1 mM L-glutamate increased the production of GABA in the medium by 2,743 7. and 2,241 7. in the light and dark, respectively. 4. L-Glutamate entered the cells prior to decarboxylation. 5. There was no evidence for a H+/GABA symport process • 6. GABA was produced by loss of carbon-1 of L-glutamate. 7. The specific activity of newly synthesized labeled GABA suggests that it is not equilibrated with a storage pool of GABA. 8. The mechanism of GABA efflux appears to be a passive process. 9. The evidence indicates that the origin of L-glutamate dependent medium alkalinization is a H+/L-glutamate symport not an extracellular decarboxylation. The possible role of GABA production in regulating cytoplasmic pH and L-glutamate levels during rapid electrogenic H+/L-glutamate symport is discussed.
Resumo:
Phospholipids in water form lamellar phases made up of alternating layers of water and bimolecular lipid leaflets. Three complementary methods, osmotic, mechanical, and vapour pressures, were used to measure the work of removing water from lamellar phases composed of frozen dipalmitoylphosphatidylcholine ( DPPC ), melted DPPC, egg phosphatidylethanolamine or equimolar mixtures of DPPC and cholesterol ( DPPC/CHOL ), Concurrently the structural changes that resulted from this water removal were measured using X-ray diffraction. The work was divided into that which forces the bilayers together ( F ) and that which compresses the molecules together within the bilayers ( F )# A large repulsive force exists between bilayers composed of each of the lipids studied and this force increases exponentially as bilayer separation is decreased. F is affected by the nature of the head groups, conformation of the acyl chains and heterogeneity of these chains. In general all of the melted phosphatidylcholines ( melted DPPC, egg lecithin and DPPC/CHOL ) have large equilibrium separations in excess water resulting from large repulsive hydration forces between these bilayers. By comparison, egg PE has an increased attractive force, and frozen DPPC has a decreased hydration force; each results in smaller separations in water for these two lipids. The chemical potentials of the water between the bilayers for all these lipids lie on a continuum, indicating that interbilayer water cannot be characterized by two discrete states, usually referred to as "bound" or "non**bound". For all lipids studied a maximum of 25 % of the total work done on the system goes into deforming the bilayers. The method used here viii to separate repulsion from deformation, developed for us by v. A. Parsegian, provides a unique method for the measurement of lateral pressure of a bilayer and its modulus of deformability ( Y ). Lateral pressure is affected by the nature of the head group, conformation and heterogeneity of the acyl chains. For small changes in molecular surface area ( A ) near equilibrium, both melted and frozen DPPC have similar values for the deformability modulus. Thus in this regime it requires about the same force to change the angle of tilt of frozen chains as it does to compress the fluid bilayer. The introduction of cholesterol into bilayers of DPPC reduces dramatically the lateral pressure of the bilayers over a large range of molecular surface areas ( A ). The variation in the magnitude of bilayer repulsion with different phospholipids provides a basis for the mechanism of lipid segregation in mixed lipid systems and suggests that interacting heterogeneous membranes may influence or modulate the composition of the opposing membrane. The measurements of deformabilities of bilayers provides a direct comparison of them with the properties of monolayers.
Resumo:
It is acknowledged that Canada's criminal justice system has some major flaws, particularly with respect to its application to various ethnic subgroups. Aboriginal Canadians are one subgroup particularly sensitive to the problems in the system as is reflected by their disproportionately high rates of criminality and incarceration. Over the past 50 years many programs have been developed and recommendations have been made to alleviate the tensions Aboriginals find within the system. However, the situation today is essentially the same. Aboriginals are still overrepresented within the system and solutions that have been brought forward have had little success in stemming their flow into the system. Blame for Aboriginal mistreatment in the system has been placed at all levels from line police officers to high-level officials and politicians and attempts to resolve problems continue as an on going process. However, many of the recommendations and reforms have revolved around culture conflict. Although this thesis recognizes the importance of culture conflict in the overrepresentation of Aboriginals within the Canadian criminal justice system, it has also recognized that culture conflict alone is not responsible for all the flaws within the system as it pertains to Aboriginals. This thesis is of the opinion that in order for reforms to the criminal justice system to be successful, the context in which the system is operating must also be considered. Variables such as geographic isolation, economic disparity and social/political stability are viewed as operating in conjunction with culture, ultimately influencing Aboriginal treatment within the system. The conclusions drawn from this study confirm that when these factors operate together, the overrepresentation of Aboriginals within the Canadian criminal justice system is inevitable. Thus all three variables, culture conflict (social/political stability being part), geographic isolation and economic disparity must be address within the system if any significant changes in the crime rates or incarceration rates of Aboriginals is to be expected. In addition, primary research indicated the influence of cooperation as a factor in moderating the effects of criminality; not just cooperation among Aboriginals and non-Aboriginals, but also cooperation among differing Aboriginal communities. It was argued that when all these issues are addressed, Aboriginal peoples in Canada will have the strength to repair their shattered futures.
Resumo:
In the present thesis, the role of hydration during the glucose induced conformational change of hexokinase is investigated. This is accomplished by applying the osmotic stress technique. The osmotic stress technique is founded on varying of the activity of water in a system in order to determine ifs effects. This is accomplished by adding inert solute molecules that are excluded from the system under study. The solute molecules used within the present investigation are Polyethylene glycols (PEGs). PEGs aid in the removal of water from hexokinase by exerting osmotic pressure. The osmotic pressures of the PEG solutions are also measured with both vapour pressure osmometry and secondary osmometry with phospholipids. An interesting discovery is made in that the osmotic pressures of PEG and co-solute solutions are non-additive. This indicates that PEG concentrates co-solutes in solution by making a certain proportion of the water inaccessible. Glucose binding was measured fluorometrically and the glucose equilibrium dissociation constant (GEDC) of hexokinase is measured in solutions containing the different MW PEGs. Changes in the sensitivity of the glucose affinity with osmotic pressure allows the calculation of the change in the numbers of polymer-inaccessible water molecules upon the binding of glucose to hexokinase ~Nw. It was determined the ~Nw decreases with increases in osmotic pressure in the presence of all MW PEGs. ~Nw decreases from values between 45-290 water molecules at low pressure to approximately 15 at high pressure. There is also a molecular weight dependence observed. There are large decreases in ~Nw with osmotic pressure in the presence of PEGs above MW 1000. However, below MW 1500 changes in ~Nw with osmotic pressure are relatively small. These findings are interpreted with respect to two possible mechanisms involving changes in the conformation of hexokinase u~der osmotic pressure and the access of the PEG molecules to water surrounding hexokinase.
Resumo:
The interaction of biological molecules with water is an important determinant of structural properties both in molecular assemblies, and in conformation of individual macromolecules. By observing the effects of manipulating the activity of water (which can be accomplished by limiting its concentration or by adding additional solutes, "osmotic stress"), one can learn something about intrinsic physical properties of biological molecules as well as measure an energetic contribution of closely associated water molecules to overall equilibria in biological reactions. Here two such studies are reported. The first of these examines several species of lysolipid which, while present in relatively low concentrations in biomembranes, have been shown to affect many cellular processes involving membrane-protein or membrane-membrane interactions. Monolayer elastic constants were determined by combining X-ray diffraction and the osmotic stress technique. Spontaneous radii of curvature of lysophosphatidylcholines were determined to be positive and in the range +30A to +70A, while lysophosphatidylethanolamines proved to be essentially flat. Neither lysolipid significantly affected the bending modulus of the monolayer in which it was incorporated. The second study examines the role of water in theprocess of polymerization of actin into filaments. Water activity was manipulated by adding osmolytes and the effect on the equilibrium dissociation constant (measured as the criticalmonomer concentration) was determined. As water activity was decreased, the critical concentration was reduced for Ca-actin but not for Mg-actin, suggesting that 10-12 fewer water molecules are associated with Ca-actin in the polymerized state. Thisunexpectedly small amount of water is discussed in the context of the common structural motif of a nucleotide binding cleft.
Resumo:
Phenolic compounds are important components of grapes and wines. They have been found to have important roles in grape and wine systems and properties that are beneficial for human health. Vanillin (3-methoxy-4-hydroxybenzaldehyde) is a phenolic compound coming from the oxidative degradation of lignin in oak-barrels during the aging of wine. Vanillin is an important flavour component of wine and its concentration in wine influences significantly the aroma and flavour of wine. The concentration of vanillin in wine is affected by various factors including the presence of metal ions. In this work, by using HPLC, HPLC-MS, and MS technologies, iron (III) cations were found to affect the oxidation of vanillin in a model system of wine, and the product of the oxidation was identified as divanillin. The mechanism of the redox reaction between vanillin and Fe^"^ is thought to follow that of other phenol oxidations. Increasing the concentration of Fe ^ in the model system accelerates divanillin production. The best pH condition for the divanillin production in the system is the range of 3.0 ~ 3.5. Increasing temperature from 20°C to 40°C accelerates the divanillin production. Divanillin was found to exist in three commercial red wines in this work. Keeping the storage temperature cool and decreasing the contact of grapes and wines with iron are two major measures suggested by this work in order to decrease the oxidation of vanillin during the making and aging of wine.
Resumo:
If you want to know whether a property is true or not in a specific algebraic structure,you need to test that property on the given structure. This can be done by hand, which can be cumbersome and erroneous. In addition, the time consumed in testing depends on the size of the structure where the property is applied. We present an implementation of a system for finding counterexamples and testing properties of models of first-order theories. This system is supposed to provide a convenient and paperless environment for researchers and students investigating or studying such models and algebraic structures in particular. To implement a first-order theory in the system, a suitable first-order language.( and some axioms are required. The components of a language are given by a collection of variables, a set of predicate symbols, and a set of operation symbols. Variables and operation symbols are used to build terms. Terms, predicate symbols, and the usual logical connectives are used to build formulas. A first-order theory now consists of a language together with a set of closed formulas, i.e. formulas without free occurrences of variables. The set of formulas is also called the axioms of the theory. The system uses several different formats to allow the user to specify languages, to define axioms and theories and to create models. Besides the obvious operations and tests on these structures, we have introduced the notion of a functor between classes of models in order to generate more co~plex models from given ones automatically. As an example, we will use the system to create several lattices structures starting from a model of the theory of pre-orders.