5 resultados para L-lactate production

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Addition of L-glutamate caused alkalinization of the medium surrounding Asparagus spreng.ri mesophyll cells. This suggests a H+/L-glutmate symport uptake system for L-glutamate. However stoichiometries of H+/L-glutamate symport into Asparagus cells were much higher than those in other plant systems. Medium alkalinization may also result from a metabolic decarboxylation process. Since L-glutmate is decarboxylated to r-amino butyric acid (SABA) in this system, the origin of medium alkalinization was reconsidered. Suspensions of mechanically isolated and photosyntheically competent Asparagus sprengeri mesophyll cells were used to investigate the H+/L-glutamate symport system, SABA production, GABA transport, and the origin of L-glutamate dependent medium alkalinization. The major results obtained are summarized as follows: 1. L-Glutamate and GABA were the second or third most abundant amino acids in these cells. Cellular concentrations of L-glutamate were 1.09 mM and 1.31 mM in the light and dark, respectively. Those of SABA were 1.23 mM and 1.17 mM in the light and dark, respectively. 2. Asparagine was the most abundant amino acid in xylem sap and comprised 54 to 68 1. of the amino acid pool on a molar basis. GABA was the second most abundant amino acid and represented 10 to 11 1. of the amino acid pool. L-Slutamate was a minor component. 3. A 10 minute incubation with 1 mM L-glutamate increased the production of GABA in the medium by 2,743 7. and 2,241 7. in the light and dark, respectively. 4. L-Glutamate entered the cells prior to decarboxylation. 5. There was no evidence for a H+/GABA symport process • 6. GABA was produced by loss of carbon-1 of L-glutamate. 7. The specific activity of newly synthesized labeled GABA suggests that it is not equilibrated with a storage pool of GABA. 8. The mechanism of GABA efflux appears to be a passive process. 9. The evidence indicates that the origin of L-glutamate dependent medium alkalinization is a H+/L-glutamate symport not an extracellular decarboxylation. The possible role of GABA production in regulating cytoplasmic pH and L-glutamate levels during rapid electrogenic H+/L-glutamate symport is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GABA (4-aminobutyrate) is synthesized through the decarboxylation of LGlu- (L-Glu-+ H+ ---> GABA + C02), and compared to many free amino acids is present in high concentrations in plant cells. GABA levels rise rapidly and dramatically in response to varied stress conditions including anaerobiosis. Recent papers suggest that GABA production and associated H+ consumption are parts of a metabolic pH-stat mechanism which ameliorates the intracellular pH decline associated with anaerobiosis or other treatments. To test this hypothesis GABA production and efflux have been measured in isolated Asparagus sprengeri cells in response to three treatments which potentially cause intracellular acidification. Acid loads were imposed using 60 min of (i) anaerobiosis, (ii) H+/LGlu- cotransport, and (iii) treatment with permeant weak acids (butyric, acetic and propionic). Both intra- and extracellular GABA concentrations increased more than 100% after anaerobiosis, almost 1000% after H+/L-Glu- cotransport (light or dark) and almost 5000/0 after addition of 5 mM butyric acid at pH 5.0. HPLC analysis of amino acids indicates that as GABA concentrations increased in response to butyric acid addition, glutamate concentrations decreased. Time-course studies demonstrated that added butyric acid stimulates GABA production by 2800/0 within 15 seconds. A fluorescent determination of cytosolic pH indicates that addition of butyric or other weak acids resulted in a rapid reduction in cytosolic pH of 0.6 pH units. The half time for the response to butyric acid addition is 2.1 seconds, indicating that the decline in cytosolic pH is rapid enough to account for the rapid stimulation of GABA production. The acid load in response to butyric acid addition was assayed by measurements of 14C-butyric acid uptake. Calculations indicate that GABA production accounted for 45% of the imposed acid load. The biological significance of GABA efflux is not yet understood. The results support the original hypothesis suggesting a role for GABA production in cellular pH regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic vocalization plays an important role in intraspecies communication for rats. It has been well demonstrated that rats will emit 22kHz vocalization in stressfiil or threatening situations. Although the neural mechanism underlying vocahzation is not well understood, it is known that chohnergic input to the basal forebrain induces such alarm calls. A number of experiments have found that intracerebral injection of carbachol, a predominantly muscarinic agonist, into die anterior hypothalamic/preoptic area (AH/POA) rehably induces vocalization similar to naturally emitted ultrasonic calls. It has also been shown that carbachol has extensive inhibitory effects on neuronal firing in the same area. This result impUes that the inhibitory effects of carbachol in the AH/POA could trigger vocahzation, and that the GABAergic system could be involved. The purpose of this study is to investigate the effects ofGABA agonists and antagonists on flie production of carbachol induced 22kHz vocalization. The following hypotheses were examined: 1) apphcation ofGABA (a naturally occurring inhibitory neurotransmitter) will have a synergistic effect with carbachol, increasing vocalization; and 2) tiie apphcation ofGABA antagonists (picrotoxin or bicuculline) will reduce caibachol-induced vocalization. A total of sixty rats were implanted with stainless steel guide cannulae in the AH/POA area. After recovery, animals were locally pretreated with 1) GABA (l-40ng), 2) picrotoxin (1 .5^g) or bicuculhne (0.03ng), or 3) sahne; before injection with carbachol (1 .5^g). The resulting vocalization was measured and quantitated. The results indicate that pretreatment with GABA or GABA antagonists had no significant effect on vocalization. Local pretreatment with GABA did not potentiate the vocal response as measured by its duration, latraicy, and total number of calls. Similarly, pretreatment with picrotoxin or bicuculline had no effects on the same measures of vocalization. The results suggest tfiat chohnoceptive neurons involved in the production of alarm calls are not under direct GABAergic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STOBBS, Lorne,W ABSTRACT Biochemical and Histological Investigations of viral localisation in the hypersensitive reaction of Phaseolus vulgaris L. var Pinto to tobacco mosaic virus infection. The infection of Phaseolus vulgaris L. var Pinto with tobacco mosaic virus (TMV) results in the production of distinct necrotic lesions confining the virus to restricted areas of the leaf surface. Biochemical and histological changes in the leaf tissue as a result of infection have been described. Trace accumulations of fluorescent metabolites, detected prior to lesion expression represent metabolites produced, by the cell in response to virus infection. These substances, are considered to undergo oxidation and in diffusing into adjacent cells, react with cellular constituents causing the death of these cells. Such cellular necrosis in advance of infection effectively limits virus spread. Chromatographic studies on extracts from TMV infected Pinto bean leaf tissue suggests that a number of extra-fluorescent metabolites produced on lesion'expression represent end products of phenolic oxidation r,eactionsoccurring earlier in these cells. Inhibition of phenolic oxidation by ascorbate infiltration or elevated temperature treatment resulted in the absence of extra-fluorescent metabolites and the continued movement of virus in the absence of necrosis. Further studies with i ascorbate infiltration indicated that irreversible necrotic events were determined as early as 12 tci 18 hrs after viral inoculation. Histochemical tests indicated that callose formation was initiated at this time, and occurred in response to necrotisation. Inhibition of necrosis by either ascorbate infiltration or elevated temp8rature treatment resulted in the absence of callose deposition. Scanning electron'micrographs of infected tissue revealed severe epidermal and palisade cell damage. Histochemical tests indicated extensive callose formation in cells bordering the lesion, and suggested the role of callose iTh the blockage of intercellular connections limiting virus movement. The significance of these cellular changes is discussed. ii

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rats emit two distinct types of ultrasonic vocalizations in adulthood: 22 kHz (aversive situation), and 50 kHz calls (appetitive situation). The present project is focussed on pharmacological studies of 50 kHz vocalizations. The 50 kHz calls are elicited from dopaminergic activation in the meso limbic pathway and are emitted in such appetitive situations as social contact(s), sexual encounters, food reward, etc. Eighty-five male rats were stereotaxically implanted with bilateral guide cannulae in the nucleus accumbens shell (A= 9.7, L= 1.2, V= 6.7). Quinpirole, a D2/D3 dopaminergic agonist, was injected in low doses to the nucleus accumbens shell in an attempt to elicit 50 kHz vocalizations. A dose response was obtained for the low dose range of quinpirole for six doses: 0.025 Jlg, 0.06 Jlg, 0.12 Jlg, 0.25 Jlg, 0.5 Jlg, and 1.0 Jlg. It was found that only application of the 0.25 Jlg dose of quinpirole and the 7 Jlg dose of amphetamine (positive control) significantly increased the total number of 50 kHz calls (p < 0.006 and p < 0.004 respectively); and particularly significantly increased the frequency modulated type of these calls (p < 0.01, and p < 0.006 respectively). In a double injection procedure, the dose of 0.25 Jlg quinpirole was antagonized with raclopride (D2 antagonist) or U99194A maleate (D3 antagonist) in an attempt to antagonize the response. The 0.25 Jlg dose of quinpirole was successfully antagonized by pre-treatment with an equimolar dose of U99194A maleate (p < 0.008) but not with raclopride. The 7Jlg amphetamine response was also antagonized with an equimolar dose of raclopride. Based on these results, it seems that low doses of quinpirole, particularly the 0.25 Jlg dose, are capable of increasing 50 kHz vocalizations in rats and do so by activation of the D3 dopamine receptor. This is not a biphasic response as seen with locomotor studies. Also noteworthy is the increase in frequency modulated 50 kHz calls elicited by the 0.25 Jlg dose of quinpirole indicating a possible increase in positive affect.