8 resultados para Facilitated Uptake
em Brock University, Canada
Resumo:
This study investigated the regulation of carbohydrate metabolism and glucose uptake through changes in skeletal muscle cell volume. Using an established invitro isolated whole muscle model, soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected from male rats and incubated in an organ bath containing Sigma medium-199 with 8 mM D-glucose altered to target osmolality (hypo-osmotic: HYPO, iso-osmotic: ISO, hyper-osmotic: HYPER; 190, 290, 400 mmol/kg). Muscles were divided into two groups; metabolite (MM) and uptake (MU). MM (N=48) were incubated for 60 minutes and were then immediately flash frozen. MU (N=24) were incubated for 30 minutes and then the extracellular fluid was exchanged for media containing ^H-glucose and ^'*C-mannitol and incubated for another 30 minutes. After the incubation, the muscles were freeze clamped. Results demonstrated a relative water decrease and increase in HYPER and HYPO, respectively. EDL and SOL glucose uptakes were found to be significantly greater in HYPER conditions. The HYPER condition resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and G-6-P) suggesting a catabolic cell state, and an increase in glycogen synthase transformation when compared to the HYPO group. In conclusion, skeletal muscle cell volume alters rates of glucose uptake with further alterations in muscle metabolites and glycogen synthase transformation.
Resumo:
The phenomenon of communitas has been described as a moment 'in and out of time' in which a collective of individuals may be experienced by one as equal and individuated in an environment stripped of structural attributes (Turner, 1 969). In these moments, emotional bonds form and an experience of perceived 'oneness' and synergy may be described. As a result of the perceived value of these experiences, it has been suggested by Sharpe (2005) that more clearly understanding how this phenomenon may be purposefully facilitated would be beneficial for leisure service providers. Consequently, the purpose of this research endeavor was to examine the ways in which a particular leisure service provider systematically employs specific methods and sets specific parameters with the intention of guiding participants toward experiences associated with communitas or "shared spirit" as described by the organization. A qualitative case study taking a phenomenological approach was employed in order to capture the depth and complexity of both the phenomenon and the purposefiil negotiation of experiences in guiding participants toward this phenomenon. The means through which these experiences were intentionally facilitated was recreational music making in a group drumming context. As such, an organization which employs specific methods of rhythm circle facilitation as well as trains other facilitators all over the world was chosen purposely for their recognition as the most respectable and credible in this field. The specific facilitator was chosen based on high recommendation by the organization due to her level of experience and expertise. Two rhythm circles were held, and participants were chosen randomly by the facilitator. Data was collected through observation in the first circle and participant- observation in the second, as well as through focus groups with circle participants. Interviews with the facilitator were held both initially to gain broad understanding of concepts and phenomenon as well as after each circle to reflect on each circle specifically. Data was read repeatedly to drawn out patterns which emerged and were coded and organized accordingly. It was found that this specific process or system of implementation lead to experiences associated with communitas by participants. In order to more clearly understand this process and the ways in which experiences associated with communitas manifest as a result of deliberate facilitator actions, these objective facilitator actions were plotted along a continuum relating to subjective participant experiences. These findings were then linked to the literature with regards to specific characteristics of communitas. In so doing, the intentional manifestation of these experiences may be more clearly understood for ftiture facilitators in many contexts. Beyond this, findings summarized important considerations with regards to specific technical and communication competencies which were found to be essential to fostering these experiences for participants within each group. Findings surrounding the maintenance of a fluid negotiation of certain transition points within a group rhythm event overall were also highlighted, and this fluidity was found to be essential to the experience of absorption and engagement in the activity and experience. Emergent themes of structure, control, and consciousness have been presented as they manifested and were found to affect experiences within this study. Discussions surrounding the ethics and authenticity of these particular methods and their implementation has also been generated throughout. In conclusion, there was a breadth as well as depth of knowledge found in unpacking this complex process of guiding individuals toward experiences associated with communitas. The implications of these findings contribute in broadening the current theoretical as well as practical understanding as to how certain intentional parameters may be set and methods employed which may lead to experiences of communitas, and as well contribute a greater knowledge to conceptualizing the manifestation of these experiences when broken down.
Resumo:
The ability to introduce DNA and express custom DNA sequences in bacteria opened the door for improvements in a large number of fields including agriculture, pharmacology, medicine, nutrition, etc. The ability to introduce foreign DNA sequences into mammalian cells in an efficient manner would have a large impact on therapeutic applications especially gene therapy. The methods in use today suffer from low efficiencies and sometimes toxicity. In this work a number of factors were evaluated for their effect onONA uptake efficiency. The factors studied included exposure to sublethal concentration of hydrogen peroxide which have been show to lead to destabilisation ofthe lysosomes. These exposures have proven to be very toxic to cells when combined with either the calcium phosphate or the lipofectAMINE® transfection methods. Another factor evaluated was exposure to Electro-Magnetic Fields (EMF). This was fuelled by the fact that EMF have been shown to mediate a number of effects on cell structure and/or physiology. EMF exposure by itself was not sufficient to induce the cells to pick up the DNA, therefore its effect on calcium phosphate and lipofectAMINE® was tested. Although some positive results were obtained, the variability of these results exceeded by far any observed enhancements which discouraged any further work on EMF. Also tested was the possible effect the presence of the cytomegalovirus (CMV) sequence might have on DNA uptake (based on previous results in this lab). It was found that the presence ofCMV in the DNA sequence does not enhance uptake or slow down degradation of the internalised DNA. The final factor tested was the effect of basic amino acids on transfection efficiency. It was found that arginine can enhance DNA uptake by about 170% v/ith calcium phosphate and about 200% with LipofectAMINE®. A model was proposed to explain the effect of arginine as well as the lack of effect from other amino acids.
Resumo:
Addition of L-glutamate caused alkalinization of the medium surrounding Asparagus spreng.ri mesophyll cells. This suggests a H+/L-glutmate symport uptake system for L-glutamate. However stoichiometries of H+/L-glutamate symport into Asparagus cells were much higher than those in other plant systems. Medium alkalinization may also result from a metabolic decarboxylation process. Since L-glutmate is decarboxylated to r-amino butyric acid (SABA) in this system, the origin of medium alkalinization was reconsidered. Suspensions of mechanically isolated and photosyntheically competent Asparagus sprengeri mesophyll cells were used to investigate the H+/L-glutamate symport system, SABA production, GABA transport, and the origin of L-glutamate dependent medium alkalinization. The major results obtained are summarized as follows: 1. L-Glutamate and GABA were the second or third most abundant amino acids in these cells. Cellular concentrations of L-glutamate were 1.09 mM and 1.31 mM in the light and dark, respectively. Those of SABA were 1.23 mM and 1.17 mM in the light and dark, respectively. 2. Asparagine was the most abundant amino acid in xylem sap and comprised 54 to 68 1. of the amino acid pool on a molar basis. GABA was the second most abundant amino acid and represented 10 to 11 1. of the amino acid pool. L-Slutamate was a minor component. 3. A 10 minute incubation with 1 mM L-glutamate increased the production of GABA in the medium by 2,743 7. and 2,241 7. in the light and dark, respectively. 4. L-Glutamate entered the cells prior to decarboxylation. 5. There was no evidence for a H+/GABA symport process • 6. GABA was produced by loss of carbon-1 of L-glutamate. 7. The specific activity of newly synthesized labeled GABA suggests that it is not equilibrated with a storage pool of GABA. 8. The mechanism of GABA efflux appears to be a passive process. 9. The evidence indicates that the origin of L-glutamate dependent medium alkalinization is a H+/L-glutamate symport not an extracellular decarboxylation. The possible role of GABA production in regulating cytoplasmic pH and L-glutamate levels during rapid electrogenic H+/L-glutamate symport is discussed.
Resumo:
Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.
Resumo:
Extracellular hyper-osmotic (HYPER) stress increases glucose uptake to defend cell volume, when compared to iso-osmotic (ISO) conditions in skeletal muscle. The purpose of this study was to determine a time course for changes in common signaling proteins involved in glucose uptake during acute hyper-osmotic stress in isolated mammalian skeletal muscle. Rat extensor digitorum longus (EDL) muscles were excised and incubated in a media formulated to mimic ISO (290 ± 10 mmol/kg) or HYPER (400 ± 10 mmol/kg) extracellular condition (Sigma Media-199). Signaling mechanisms were investigated by determining the phosphorylation states of Akt, AMPK, AS160, cPKC and ERK after 30, 45 and 60 minutes of incubation. AS160 was found to be significantly more phosphorylated in HYPER conditions compared to ISO after 30 minutes (p<0.01). It is speculated that AS160 phosphorylation increases glucose transporter 4 (GLUT4) content at the cell surface thereby facilitating an increase in glucose uptake under hyper-osmotic stress.
Resumo:
Endonuclease G (EndoG) is a well conserved mitochondrial nuclease with dual lethal and vital roles in the cell. It non-specifically cleaves endogenous DNA following apoptosis induction, but is also active in non-apoptotic cells for mitochondrial DNA (mtDNA) replication and may also be important for replication, repair and recombination of genomic DNA. The aim of our study was to examine whether EndoG exerts similar activities on exogenous DNA substrates such as plasmid DNA (pDNA) and viral DNA vectors, considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus (a cationic liposome transfection reagent), targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. To investigate possible effects of EndoG on viral DNA vectors, we constructed and evaluated AdsiEndoG, a first generation adenovirus (Ad5 ΔE1) vector encoding a shRNA directed against EndoG mRNA, along with appropriate Ad5 ΔE1 controls. Infection of HeLa cells with AdsiEndoG at a multiplicity of infection (MOI) of 10 p.f.u./cell resulted in an early cell proliferation defect, absent from cells infected at equivalent MOI with control Ad5 ΔE1 vectors. Replication of Ad5 ΔE1 DNA was detected for all vectors, but AdsiEndoG DNA accumulated to levels that were 50 fold higher than initially, four days after infection, compared to 14 fold for the next highest control Ad5 ΔE1 vector. Deregulation of the cell cycle by EndoG depletion, which is characterized by an accumulation of cells in the G2/M transition, is the most likely reason for the observed cell proliferation defect. The enhanced replication of AdsiEndoG is consistent with this conclusion, as Ad5 ΔE1 DNA replication is intimately related to cell cycling and prolongation or delay in G2/M greatly enhances this process. Furthermore, infection of HeLa with AdsiEndoG at MOI of 50 p.f.u./cell resulted in an almost complete disappearance of viable, adherent tumour cells from culture, whereas almost a third of the cells were still adherent after infection with control Ad5 ΔE1 vectors, relative to the non-infected control. Therefore, targeting of EndoG by RNAi is a viable strategy for improving the oncolytic properties of first generation adenovirus vectors. In addition, AdsiEndoG-mediated knockdown of EndoG reduced homologous recombination between pDNA substrates in HeLa cells. The effect was modest but, nevertheless demonstrated that the proposed role of EndoG in homologous recombination of cellular DNA also extends to exogenous DNA substrates.
Resumo:
Skeletal muscle (SKM) is the most important tissue in maintaining glucose homeostasis and impairments in this tissue leads to insulin resistance (IR). Activation of 5’ AMP-activated kinase (AMPK) is viewed as a targeted approach to counteract IR. Rosemary extract (RE) has been reported to decrease blood glucose levels but its effects on SKM are not known. We hypothesized that RE acts directly on SKM to increase glucose uptake (GU). We found an increase in GU (184±5.07% of control, p<0.001) in L6 myotubes by RE to levels similar to insulin and metformin. Carnosic acid (CA) and rosmarinic acid (RA), major polyphenols found in RE, increased GU. RE, CA, and RA significantly increased AMPK phosphorylation and their effects on GU was reduced by an AMPK inhibitor. Our study is the first to show a direct effect of RE, CA and RA on SKM GU by a mechanism that involves AMPK activation.