2 resultados para Elastic moduli

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly and testing of apparatus for the measurement of elastic and photoelastic constants by Brillouin scattering, using a Fabry-Perot interferometer and with argon ion laser excitation is described. Such measurements are performed on NaCI, KBr and LiF using the A = 488.0 nm laser line. The elastic constants obtained here are in very good agreement with the ultrasonic data for all three materials. The discrepancy between ultrasonic and hypersonic sound velocities which was reported by some authors for KBr and LiF is not confirmed, and the elastic constants obtained for LiF are the most accurate to date. Also, the present photoelastic constants are in good agreement with the data obtained by ultrasonic techniques for all three crystals. The results for the KBr and LiF crystals constitute the first set of photoelastic constants obtained for these materials by Brillouin spectroscopy. Our results for LiF are the best available to date.