2 resultados para 3-DIMENSIONAL DOSIMETRY
em Brock University, Canada
Resumo:
The spatial limits of the active site in the benzylic hydroxylase enzyme of the fungus Mortierella isabellina were investigated. Several molecular probes were used in incubation experiments to determine the acceptability of each compound by this enzyme. The yields of benzylic alcohols provided information on the acceptability of the particular compound into the active site, and the enantiomeric excess values provided information on the "fit" of acceptable substrates. Measurements of the molecular models were made using Cambridge Scientific Computing Inc. CSC Chem 3D Plus modeling program. i The dimensional limits of the aromatic binding pocket of the benzylic hydroxylase were tested using suitably substituted ethyl benzenes. Both the depth (para substituted substrates) and width (ortho and meta substituted substrates) of this region were investigated, with results demonstrating absolute spatial limits in both directions in the plane of the aromatic ring of 7.3 Angstroms for the depth and 7.1 Angstroms for the width. A minimum requirement for the height of this region has also been established at 6.2 Angstroms. The region containing the active oxygen species was also investigated, using a series of alkylphenylmethanes and fused ring systems in indan, 1,2,3,4-tetrahydronaphthalene and benzocycloheptene substrates. A maximum distance of 6.9 Angstroms (including the 1.5 Angstroms from the phenyl substituent to the active center of the heme prosthetic group of the enzyme) has been established extending directly in ii front of the aromatic binding pocket. The other dimensions in this region of the benzylic hydroxylase active site will require further investigation to establish maximum allowable values. An explanation of the stereochemical distributions in the obtained products has also been put forth that correlates well with the experimental observations.
Resumo:
Copper arsenite CuAs2O4 and Copper antimonite CuSb2O4 are S=1/2 (Cu2+ 3d9 electronic configuration) quasi-one-dimensional quantum spin-chain compounds. Both compounds crystallize with tetragonal structures containing edge sharing CuO6 octahedra chains which experience Jahn-Teller distortions. The basal planes of the octahedra link together to form CuO2 ribbon-chains which harbor Cu2+ spin-chains. These compounds are magnetically frustrated with competing nearest-neighbour and next-nearest-neighbour intrachain spin-exchange interactions. Despite the similarities between CuAs2O4 and CuSb2O4, they exhibit very different magnetic properties. In this thesis work, the physical properties of CuAs2O4 and CuSb2O4 are investigated using a variety of experimental techniques which include x-ray diffraction, magnetic susceptibility measurements, heat capacity measurements, Raman spectroscopy, electron paramagnetic resonance, neutron diffraction, and dielectric capacitance measurements. CuAs2O4 exhibits dominant ferromagnetic nearest-neighbour and weaker antiferromagnetic next-nearest-neighbour intrachain spin-exchange interactions. The ratio of the intrachain interactions amounts to Jnn/Jnnn = -4.1. CuAs2O4 was found to order with a ferromagnetic groundstate below TC = 7.4 K. An extensive physical characterization of the magnetic and structural properties of CuAs2O4 was carried out. Under the effect of hydrostatic pressure, CuAs2O4 was found to undergo a structural phase transition at 9 GPa to a new spin-chain structure. The structural phase transition is accompanied by a severe alteration of the magnetic properties. The high-pressure phase exhibits dominant ferromagnetic next-nearest-neighbour spin-exchange interactions and weaker ferromagnetic nearest-neighbour interactions. The ratio of the intrachain interactions in the high-pressure phase was found to be Jnn/Jnnn = 0.3. Structural and magnetic characterizations under hydrostatic pressure are reported and a relationship between the structural and magnetic properties was established. CuSb2O4 orders antiferromagnetically below TN = 1.8 K with an incommensurate helicoidal magnetic structure. CuSb2O4 is characterized by ferromagnetic nearest-neighbour and antiferromagnetic next-nearest-neighbour spin-exchange interactions with Jnn/Jnnn = -1.8. A (H, T) magnetic phase diagram was constructed using low-temperature magnetization and heat capacity measurements. The resulting phase diagram contains multiple phases as a consequence of the strong intrachain magnetic frustration. Indications of ferroelectricity were observed in the incommensurate antiferromagnetic phase.