34 resultados para wastewater pumping station
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Pumppauksessa arvioidaan olevan niin teknisesti kuin taloudellisestikin huomattavia mahdollisuuksia säästää energiaa. Maailmanlaajuisesti pumppaus kuluttaa lähes 22 % sähkö-moottorien energiantarpeesta. Tietyillä teollisuudenaloilla jopa yli 50 % moottorien käyttämästä sähköenergiasta voi kulua pumppaukseen. Jäteveden pumppauksessa pumppujen toiminta perustuu tyypillisesti on-off käyntiin, jolloin pumpun ollessa päällä se käy täydellä teholla. Monissa tapauksissa pumput ovat myös ylimitoitettuja. Yhdessä nämä seikat johtavat kasvaneeseen energian kulutukseen. Työn teoriaosassa esitellään perusteet jätevesihuollosta ja jäteveden käsittelystä sekä pumppaussysteemin pääkomponentit: pumppu, putkisto, moottori ja taajuusmuuttaja. Työn empiirisessä osassa esitellään työn aikana kehitetty laskuri, jonka avulla voidaan arvioida energiansäästöpotentiaalia jäteveden pumppaussysteemeissä. Laskurilla on mandollista laskea energiansäästöpotentiaali käytettäessä pumpun tuoton ohjaustapana pyörimisnopeuden säätöä taajuusmuuttajalla on-off säädön sijasta. Laskuri ilmoittaa optimaalisimmanpumpun pyörimisnopeuden sekä ominaisenergiankulutuksen. Perustuen laskuriin, kolme kunnallista jätevedenpumppaamoa tutkittiin. Myös laboratorio-testitsuoritettiin laskurin simuloimiseksi sekä energiansäästöpotentiaalin arvioimiseksi. Tutkimukset osoittavat, että jätevedenpumppauksessa on huomattavia mandollisuuksia säästää energiaa pumpun pyörimisnopeutta pienentämällä. Geodeettisen nostokorkeuden ollessa pieni, voidaan energiaa säästää jopa 50 % ja pitkällä aikavälillä säästö voi olla merkittävä. Tulokset vahvistavat myös tarpeen jätevedenpumppaussysteemien toiminnan optimoimiseksi.
Resumo:
Pumppaaminen kuluttaa teollisuudessa huomattavan osan energiasta, joten siellä on myös merkittäviä säästömahdollisuuksia. Maailmanlaajuisesti pumppaus kuluttaa noin viidenneksen sähkömoottorien energiantarpeesta, ja tietyillä teollisuudentoimialoilla jopa yli 50%. Jätevedenpumppaus perustuu edelleenkin pääosin 50- ja 60- luvuilla kehitettyyn tekniikkaan, merkittäviä energiansäästöjä on mahdollista saavuttaa suhteellisen pienillä investoinneilla. Työn teoriaosassa käsitellään perusteet jätevedenkäsittelystä, ja viemäriputkiston rakenteesta. Pumppuja, sähkömoottoreita ja taajuusmuuttajia käsitellään laajemmin keskittyen niiden toimintaan ja toimintaa ohjaaviin teorioihin. Empiirisessä osassa tutkitaan uuden teknologian energiansäästöpotentiaalia erilaisilla mittauksilla, sekä mittausten pohjalta tehdyillä case-analyyseillä. Näitä analyysejä varten työn aikana kehiteltiin laskin, jolla voidaan arvioida energian kulutusta tunnetulle pumpulle, kun tiedetään haluttu toimintapiste. Työssä käsitelty uusi teknologia on mahdollisesti merkittävin uudistus viemäriveden pumppausteknologiaan taajuusmuuttajien käyttöönoton jälkeen. Teknologialla päästään eroon imukaivoista liki täysin, ja sitä kautta saadaan paremmin hallittua monia ongelmia kuten hajuhaittoja. Teknologian merkittävin hyöty on kuitenkin energiansäästö. Perinteisessä teknologiassa taajuusmuuttajat ovat olleet kannattavia, mikäli geodeettisen nostokorkeuden osuus on mahdollisimman pieni. Tyypillisessä uuden teknologian sovelluskohteissa geodeettinen nostokorkeus tulee yleensä olemaan pieni, joten uuden teknologian käyttöönoton kannattavuus on näissä kohteissa erityisen hyvä.
Resumo:
Kaukolämmitys on yleisin Suomessa käytetty lämmitysmuoto ja sen osuus koko lämmitysmarkkinoista on noin 50 %. Kaukolämmön varsinainen tuotanto ja jakelu alkoivat Suomessa vuonna 1957 ja Jyväskylässä vuonna 1960. Jyväskylässä kaukolämmön piiriin kuuluivuoden 2006 loppuun mennessä noin 3200 asiakasta. Suurin tuntiteho laitoksilta oli noin 375 MW. Vuonna 2020 suurimman tuntitehon on ennustettu olevan noin 480 MW, mikä tarkoittaa asiakasmäärän ja verkon pituuden merkittävää kasvua. Jyväskylän kaukolämpöverkon nykytilanne on hyvä. Verkostolaskennan tulosten perusteella lämpö saadaan siirtymään nykyisillä laitoksilla ja verkon laitteilla jokaiselle asiakkaalle niin normaalitilanteessa kuin päälaitoksen häiriötilanteessa. Häiriötilanteessa paikallisia ongelmia voi esiintyä, mutta niihin voidaan vaikuttaa parantavasti esimerkiksi verkon staattisen paineen nostolla. Jyväskylän kaukolämpöverkon tulevaisuuden näkymät ovat erinomaiset. Laskennan perusteella verkkoa voidaan laajentaa kaikille laskennassa mukana olleille alueille ilman suurempia ongelmia. Uuden tuotantokapasiteetin, verkonlaajentumisen ja asiakasmäärän kasvun aiheuttamat kehitystarpeet saatiin selvitetyksi ja tulokset olivat aikaisempien tutkimusten suuntaisia. Tulevaisuutta ajatellen verkkoon joudutaan tekemään muutamia muutoksia suunniteltujen uusien yhteyksien lisäksi. Uuteen linjaan, joka yhdistää Palokan verkon toisen yhteyden kautta Jyväskylän pääverkkoon, rakennetaan mahdollisesti pumppaamo. Lisäkuristusventtiilejä tarvitaan viiteen eri paikkaan turvaamaan riittävän suuret kaukolämpöveden paluupaineet. Osa venttiileistä olisi suositeltavaa asentaa jo nykytilanteessa, sillä niiden hankinta parantaisi verkon nykytilaa.
Resumo:
Tämän työn tarkoituksena on tarkastella tulevaisuuden kehitysnäkymien vaikutusta Vaasan kaukolämpötoimintaan. Komartekin Flowra 32 verkostolaskentaohjelman avulla tutkitaan kaukolämpöverkon siirtokykyä nykyisissä ja tulevaisuuden kuormitustilanteissa. Työn yhteydessä laaditaan kaukolämmityksen kasvuennuste seuraavalle kymmenelle vuodelle ja selvitetään mitoituslämpötilaa -29°C vastaava teho tilastollisen analyysin avulla. Lisäksi tutkitaan mahdollisia ratkaisuja huippu- ja varatehon tuottamiseksi. Tarkastelun kohteena on myös lämmön lyhytaikaisvarastoinnin kannattavuus energianhankintajärjestelmässä. Kaukolämpöverkon siirtokyky on tarkastelun perusteella kohtalaisen hyvä, mutta liittymistehojen kasvaessa paine-erot verkon häntäpäässä jäävät liian alhaisiksi. Paras ratkaisu paine-ero ongelmaan on rakentaa välipumppaamo Hovioikeudenpuistoon. Tarkastelun perusteella kaukolämmön varatehon lisätarve on kymmenen vuoden kuluttua noin 40 MW ja varatehoksi on kannattavinta rakentaa raskasta polttoöljyä käyttävä lämpökeskus. Lämmön lyhytaikaisvarastointi on nykyisillä energianhinnoilla kohtalaisen kannattavaa varsinkin, jos Kauppa- ja teollisuusministeriö myöntää hankkeelle täyden 30%:n investointiavustuksen.
Resumo:
Läntisen Pien-Saimaan vesistön alueella on ilmennyt voimakasta sinileväkukintaa vuosina 2006 - 2009. Yksi tehokas keino vähentää sinilevien määrää ja parantaa vedenlaatua, onravinnepitoisuuksien alentaminen virtausohjauksen avulla. Tästä on 70 vuoden kokemus Pien- Saimaan itäosissa, joissa Vehkataipaleen pumppaamon virta on pitänyt vedenlaadun hyvänä huolimatta vesialuetta raskaasti rasittavasta puunjalostusteollisuudesta. Diplomityössä selvitetään mahdollisuuksia toteuttaa virtauksenohjausta myös läntisen Pien-Saimaan puolella, jolloin tavoitteena on vedenlaadun paraneminen. Vedenlaadun parantamista edellyttää myös Euroopan unionin vesipuitedirektiivi. Selvityksessä tarkasteltiin virtauksenohjauksen eri toteutusvaihtoehtoja ja arvioitiin näiden vaikutuksia eri alueiden vedenlaatuun. Tämän lisäksi kartoitettiin ja arvioitiin eri vaihtoehdoista aiheutuvia riskejä. Näiden tietojen pohjalta päädyttiin suositeltaviin virtauksenohjauksen toteutusvaihtoehtoihin, joita ovat Kolhonlahti – Kolinlahti välillä toteutettu pumppaus ja mahdollisen Kutilan kanavan rakentamisen yhteydessä Kopinsalmen pumppaamo. Kolhonlahti – Kolinlahti sijaitsee Pien-Saimaan koillisosassa lähellä Rehulaa. Muista tarkastelluista kohteista saatiin yhdistelemällä suositeltavaksi vaihtoehdoksi myös Vehkataipaleen pumppaamon virran kasvattaminen yhdistettynä Kirjamoinsalmen tai Kopinsalmen pumppaamoon. Tämän lisäksi eri vaihtoehdoille laadittiin alustava kustannustarkastelu. Selvityksessä käytettyjä menetelmiä ja tuloksia voidaan soveltaa myös muihin vastaavan tyyppisiin vesistöjen kunnostushankkeisiin. Työssä on lisäksi koottu yhteen yleistietoja Pien-Saimaasta ja sen tunnetuista virtauksista.
Resumo:
Mikkelin talousvedestä kahden kolmasosan tullessa Pursialan pohjavesialueelta on alueen suojeleminen tärkeää. Pohjaveden laatua uhkaavat etenkin alueella sattuneet pohjavedenpilaantumistapaukset. Merkittävimmät pohjaveden pilaantumistapaukset ovat VAPO Oy:n sahan aiheuttama pohjaveden pilaantuminen kloorifenoleilla (CP) ja VR:n ratapölkkykyllästämön aiheuttama pohjaveden pilaantuminen kreosoottiöljyllä sekä Rinnekadun Nesteen aiheuttama pohjaveden pilaantuminen MTBE:llä. Alueella on tehty tutkimuksia ja kunnostuksia pilaantumiin liittyen, mutta näiden tuloksia ei ole aikaisemmin koottu yhteen. Tämän työn tavoitteena oli koota tulokset samaan aineistoon. Työssä keskityttiin kloorifenolien leviämisen tarkasteluun sen Pursialan pohjavedenottamolle muodostaman suurimman uhan vuoksi. Kallioperätietojen, maanpintatietojen ja näytetietojen pohjalta laadittiin myös pienoismalli CP-pilaantuman leviämisen kokonaiskuvan hahmottamiseksi. Työn tavoitteena oli lisäksi tehdä riskitarkastelua CP-pilaantumaan liittyen ja etsiä keinoja hallita havaittuja riskejä. Riskinhallintaan liittyen työssä tutkittiin kloorifenoleilla pilaantuneen alueen maaperä- ja kalliotietoja sekä pohjaveden laatutietoja. Pursialan pohjavedessä on runsaasti rautaa ja mangaania sekä aggressiivista hiilihappoa. Pohjaveden pH on alueella noin 6,5, lämpötila noin 7,5 ºC ja happipitoisuus noin 0,7 mg/l. Pursialan kaupunginalueen kallioperässä on havaittavissa VAPO Oy:n sahalta vedenottamolle etenevä kalliopainanne, jota pitkin CP etenee. Alueen kallioperä on kiillegneissiä, jossa on pohjois–etelä-suuntaista rakoilua. Maaperätuloksien perusteella on havaittavissa vettä hyvin johtavien maakerrosten jatkuminen koko vedenottamon ja sahan välisen matkan, mikä tarkoittaa, että CP-pitoisella pohjavedellä voi olla aiemmin oletettua nopeampikin yhteys sahalta vedenottamolle. Suurin CP-pitoisuus noin 100 000 µg/l on mitattu KY-5-altaan kohdalle asennetun M14-pohjavesiputken pohjasta. Talousvesiasetuksen raja-arvo CP:lle on 10 µg/l. Sahan ja vedenottamon puolivälissä on havaittu yli 10 000 µg/l meneviä CP-pitoisuuksia. Suurin vedenottamon kaivoista (kaivo 10) mitattu pitoisuus on 149 µg/l. Jakotukilta raakavedestä otetuissa näytteissä tai talousvedessä ei ole kuitenkaan havaittu talousvesiasetuksen ylittäviä CP-pitoisuuksia. Pienoismallin perusteella CP sijaitsee sahan alueella lähellä kallionpintaa ja hajaantuu koko pohjavesipatjaan vedenottamolle päin mentäessä. CP-mittaustuloksissa on havaittavissa pulssimaisuutta. Tämä johtuu todennäköisesti Saimaan pinnan vaihtelun seurauksena muuttuvasta rantaimeytyneen pohjaveden määrästä. Saimaan pinnan nousu näyttäisi tuloksien perusteella nostavan CP-pitoisuuksia saha-alueella ja laskevan lähellä vedenottamoa. Pohjaveden pintatietojen perusteella tehdyn tarkastelun mukaan pohjavesi voi kulkeutua sahalta vedenottamolle parhaimmillaan noin vuodessa. Työssä arvioitiin KY-5–liuoksen vuosittaiseksi käyttömääräksi noin 648–970 m3. Allassakkaa arvioitiin syntyneen yhteensä noin 10–31 m3. Pohjaveteen arvioitiin joutuneen toiminnan aikana yhteensä noin 3 000–4 000 kg CP:tä. Kloorifenolit esiintyvät pohjavedessä lähes täysin kloorifenolaatteina. Kloorifenolien hajoaminen ja muuntuminen pohjavedessä on epätodennäköistä. Käsitteellisen mallin mukaan kloorifenolipilaantuman suurimmat riskit aiheutuvat kloorifenolien mahdollisuudesta pilata Pursialan vedenottamon talousvesi. Tällä hetkellä riskejä hallitaan kloorifenolien leviämisen tarkkailulla, sahan ja vedenottamon puolivälissä sijaitsevalla koepumppauksella sekä varautumalla aktiivihiilijauheen syöttöön talousvesiprosessiin. Koepumppauksen avulla on saatu ylös tällä hetkellä noin 69 kg kloorifenoleita. Tutkimuksen perusteella suositeltavimmat riskinhallintatoimet tulevaisuudessa ovat sahalla sijaitseva kunnostuspumppaus, sahan ja vedenottamon väliin sijoittuva suojapumppaus- ja vesiverhoyhdistelmä sekä sahan rannan kautta tapahtuvan rantaimeytymisen estäminen.
Measurements of the magnetism of the Mars-96 small station at the Nurmijärvi geophysical observatory
Resumo:
Diplomityön tavoitteena on selvittää Wärtsilän dieselvoimalaitosten jätevedenkäsittelyn vallitseva tila. Tutkimuksessa keskitytään raskaspolttoöljykäyttöisiin voimalaitoksiin. Työssä selvitetään yleisimmät dieselvoimalaitosten jätevesille asetetut vaatimukset. Selvitys tehdään keräämälläja tutkimalla dieselvoimalaitosten jätevesille sovellettuja standardeja. Työssä selvitetään myös dieselvoimalaitokselta ulostulevan jäteveden laatu sekä nykyisen jätevedenkäsittelyjärjestelmän toiminta. Selvitys tehdään keräämällä ja tutkimalla yrityksen sisäisiä tietoja, sekä ottamalla ja analysoimalla jätevesinäytteitä. Näytteiden otto ja analysointi toteutetaan vierailemallakahdessa voimalaitoksessa sekä yhdessä muussa kohteessa. Jäteveden laatu ennen ja jälkeen käsittelyn määritetään. Myös öljynjalostusteollisuuden jätevedenkäsittelyä tarkastellaan kirjallisuuteen pohjautuen. Tarkastelun tavoitteena on hankkia tietoa jätevedenkäsittelystä kohteissa, joissa jäteveden laatu vastaa dieselvoimalaitoksella syntyvää jätevettä. Vertailun vuoksi myös öljynjalostusteollisuudelle asetetuttuja jätevesistandardeja tutkitaan. Lisäksi työssä tutkitaan myös joitakin muita jätevedenkäsittelymenetelmiä. Diplomityön tuloksena määritetään dieselvoimalaitosten jätevedenkäsittelyn tulevaisuuden haasteet ja mahdollisuudet.
Resumo:
WCDMA tukiasema (Node B) on osa UMTS-järjestelmän radioverkkoa. Node B on tärkeä verkkoelementti, jonka tarkoituksena on yhdistää mobiilikäyttäjät verkkoon. Telecom –ohjelmisto (TCOM SW) on vastuussa suuresta osasta Node B:n toiminnallisuutta. TCOM SW:n testaukseen käytetään paljon resursseja, jotta ohjelmiston oikeasta toiminnasta ja laadusta voidaan varmistua. System component testing on testausvaihe, jossa järjestelmän (Node B) osa (system component, tässä diplomityössä TCOM SW) testataan ennen sen integroimista muuhun järjestelmään. Tähän tarvitaan testityökalu ja testitapausten toteutus. Node B TTCN Tester (testeri) on työkalu, jota käytetään Node B:n ohjelmiston testauksessa. Testitapaukset toteutetaan TTCN-testinotaatiota käyttäen ja testataan testerin avulla. TCOM SW:n system component –testausvaihetta varten testeriin lisättiin uudet rajapinnat, joiden avulla voidaan simuloita Node B:n ATM-ohjelmistoa sekä WPA- ja WTR-yksiköitä. Tässä diplomityössä toteuttiin TTCN testitapaukset uusille rajapinnoille. Testitapaukset tekivät TCOM SW system component –testausvaiheen riippumattomaksi Node B:n ATM-ohjelmistosta sekä WPA- ja WTR-yksiköistä. Lisäksi TCOM SW:n toiminnan testaus näissä rajapinnoissa voidaan tästä lähtien tehdä automaattisesti. Testitapauksien toiminta varmistettiin testeriä käyttäen. Tulokset olivat hyviä, uudet testitapaukset ja TTCN rajapinnat toimivat oikein lisäten testauksen tehokkuutta.
Resumo:
TTCN-kieltä käytetään testitapausten määrittelemiseen tietoliikennejärjestelmissä. Nykyään TTCN:stä on tullut yhä suositumpi tapa toteuttaa testitapauksia. TTCN tarjoaa hyvän ja yksinkertaisen tavan muuntaa käsin testattavat testitapaukset automatisoiduiksi. Tämän diplomityön yhteydessä toteutettiin TTCN testitapaukset WCDMA -tukiaseman käyttö- ja kunnossapito- (O&M) ohjelmistolle. Ohjelmistoa on käytetty myös toisen sukupolven tukiasemissa, mutta kolmannen sukupolven tukiasemissa sillä on huomattavasti isompi rooli. WCDMA -tukiasemassa O&M käsittelee muun muassa tukiaseman käynnistyksen, virhetilanteet ja valvoo tukiaseman komponentteja. Ensimmäisiä tehtäviä diplomityötä tehdessä oli valita ne testitapaukset, jotka olisivat mahdollisia ja hyödyllisiä toteuttaa TTCN:n avulla. Testitapaukset valittiin valmiina olleista testitapausten kuvauksista. Valitut testitapaukset toteutettiin käyttäen rinnakkaista ja modulaarista TTCN-kieltä ja testattiin WCDMA -tukiasemaa vasten käyttäen TTCN Tester ohjelmistoa. Tämän diplomityön yhteydessä toteutettuja testitapauksia käytetään varmistamaan, että tukiasema voi toipua erilaisista virhetilanteista O&M ohjelmiston avulla. Testitapauksia WCDMA -tukiasemaa vasten ajettaessa varmistetaan myös, että O&M ohjelmisto toimii määrittelyn mukaisesti eri tilanteissa. Toteutetut testi tapaukset korvaavat nykyään käsin testatut O&M testi tapaukset tukiaseman O&M ohjelmistoa testatessa. Automatisoidut testi tapaukset tekevät O&M ohjelmiston testaamisen merkittävästi nopeammaksi ja helpommaksi.
Resumo:
As the world’s energy demand is increasing, a durable solution to control it is to improve the energy efficiency of the processes. It has been estimated that pumping applications have a significant potential for energy savings trough equipment or control system changes. For many pumping application the use of a variable speed drive as a process control element is the most energy efficient solution. The main target of this study is to examine the energy efficiency of a drive system that moves the pump. In a larger scale the purpose of this study is to examine how the different manufacturers’ variable speed drives are functioning as a control device of a pumping process. The idea is to compare the drives from a normal pump user’s point of view. The things that are mattering for the pump user are the efficiency gained in the process and the easiness of the use of the VSD. So some thought is given also on valuating the user-friendliness of the VSDs. The VSDs are compared to each other also on the basis of their life cycle energy costs in different kind of pumping cases. The comparison is made between ACS800 from ABB, VLT AQUA Drive from Danfoss, NX-drive from Vacon and Micromaster 430 from Siemens. The efficiencies are measured in power electronics laboratory in the Lappeenranta University of Technology with a system that consists of a variable speed drive, an induction motor with dc-machine, two power analyzers and a torque transducer. The efficiencies are measured as a function of a load at different frequencies. According to measurement results the differences between the measured system efficiencies on the actual working area of pumping are on average few percent units. When examining efficiencies at the whole range of different loads and frequencies, the differences get bigger. At low frequencies and loads the differences between the most efficient and the least efficient systems are at the most about ten percent units. At the most of the tested points ABB’s drive seem to have slightly better efficiencies than the other drives.