41 resultados para ultrasonic method
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Hitsattujen rakenteiden väsymiskestävyyttä pystytään parantamaan jälkikäsittelymenetelmillä, joistayksi, ultraäänikäsittely muokkaa hitsin geometriaa ja aiheuttaa puristusjäännösjännitystilan. Tässä tutkimuksessa verrataan kokeellisesti kuormaa kantamattoman hitsatun ja ui -käsitellyn rivan väsymislujuutta toisiinsa. Tutkimusohjelmaan kuuluu kahta teräslajia ja sekä vakio - että vaihtuva - amplitudista kuormitusta. Ultraäänikäsittelyllä saavutetaan väsymiskestoiän parantuminen vakio - ja vaihtuva - amplitudisella kuormituksella. Perusaineen lujuudella ei ole merkittää vaikutusta väsymislujuuteen kun liitos on hitsatussa tilassa. Tällöin väsymiskestävyyden määrää hitsin rajaviivan jännityskeskittymä. Ultraäänikäsitellyn hitsatunliitoksen väsymiskestävyys on suurempi korkeamman lujuuden omaavilla teräksillä. Tästä syystä korkealujuuksisten terästen käyttö ultraäänikäsiteltynä väsyttävästi kuormitetuissa kevytrakenteissa on perusteltua.
Resumo:
It is commonly observed that complex fabricated structures subject tofatigue loading fail at the welded joints. Some problems can be corrected by proper detail design but fatigue performance can also be improved using post-weld improvement methods. In general, improvement methods can be divided into two main groups: weld geometry modification methods and residual stress modification methods. The former remove weld toe defects and/or reduce the stress concentrationwhile the latter introduce compressive stress fields in the area where fatigue cracks are likely to initiate. Ultrasonic impact treatment (UIT) is a novel post-weld treatment method that influences both the residual stress distribution andimproves the local geometry of the weld. The structural fatigue strength of non-load carrying attachments in the as-welded condition has been experimentally compared to the structural fatigue strength of ultrasonic impact treated welds. Longitudinal attachment specimens made of two thicknesses of steel S355 J0 have been tested for determining the efficiency of ultrasonic impacttreatment. Treated welds were found to have about 50% greater structural fatigue strength, when the slope of the S-N-curve is three. High mean stress fatigue testing based on the Ohta-method decreased the degree of weld improvement only 19%. This indicated that the method could be also applied for large fabricated structures operating under high reactive residual stresses equilibrated within the volume of the structure. The thickness of specimens has no significant effect tothe structural fatigue strength. The fatigue class difference between 5 mm and 8 mm specimen was only 8%. It was hypothesized that the UIT method added a significant crack initiation period to the total fatigue life of the welded joints. Crack initiation life was estimated by a local strain approach. Material parameters were defined using a modified Uniform Material Law developed in Germany. Finite element analysis and X-ray diffraction were used to define, respectively, the stress concentration and mean stress. The theoretical fatigue life was found to have good accuracy comparing to experimental fatigue tests.The predictive behaviour of the local strain approach combined with the uniformmaterial law was excellent for the joint types and conditions studied in this work.
Resumo:
Summary
Resumo:
Summary
Resumo:
Selostus: Alumiini- ja rautaoksidien fosforikyllästysasteen arvioiminen suomalaisista peltomaista
Resumo:
[Abstract]
Resumo:
Abstract
Resumo:
The objective of this thesis work was to assess axial misalignment in fatigue loaded welds using the effective notch method. As a result, the fatigue behaviour of non-load carrying cruciform fillet welded joint under cyclic tensile loading has been studied. Various degrees of axial misalignment have been found in one series of non-load carrying cruciform fillet welded joints used in a laboratory investigation. As a result, it was important to carry out a comprehensive investigation since axial misalignment forms part of thequality of fatigue loaded structure and can reduce the fatigue strength. To extend the study, the correlation between fatigue strength and stress ratio, as well as stress concentration factor, were also studied. Moreover, a closer investigation of place of crack initiation and its dependence on weld sequence and imperfections of test specimen (angular distortion) was studied. For the fatigue class calculations, FEM (finite element method) and the effectivenotch approach are used. The addressed variable is the axial misalignment whichis introduce by modeling the entire joint. Fracture mechanics based calculations are also used and quantitatively compared with effective notch and experimental results.
Resumo:
Nowadays the used fuel variety in power boilers is widening and new boiler constructions and running models have to be developed. This research and development is done in small pilot plants where more faster analyse about the boiler mass and heat balance is needed to be able to find and do the right decisions already during the test run. The barrier on determining boiler balance during test runs is the long process of chemical analyses of collected input and outputmatter samples. The present work is concentrating on finding a way to determinethe boiler balance without chemical analyses and optimise the test rig to get the best possible accuracy for heat and mass balance of the boiler. The purpose of this work was to create an automatic boiler balance calculation method for 4 MW CFB/BFB pilot boiler of Kvaerner Pulping Oy located in Messukylä in Tampere. The calculation was created in the data management computer of pilot plants automation system. The calculation is made in Microsoft Excel environment, which gives a good base and functions for handling large databases and calculations without any delicate programming. The automation system in pilot plant was reconstructed und updated by Metso Automation Oy during year 2001 and the new system MetsoDNA has good data management properties, which is necessary for big calculations as boiler balance calculation. Two possible methods for calculating boiler balance during test run were found. Either the fuel flow is determined, which is usedto calculate the boiler's mass balance, or the unburned carbon loss is estimated and the mass balance of the boiler is calculated on the basis of boiler's heat balance. Both of the methods have their own weaknesses, so they were constructed parallel in the calculation and the decision of the used method was left to user. User also needs to define the used fuels and some solid mass flowsthat aren't measured automatically by the automation system. With sensitivity analysis was found that the most essential values for accurate boiler balance determination are flue gas oxygen content, the boiler's measured heat output and lower heating value of the fuel. The theoretical part of this work concentrates in the error management of these measurements and analyses and on measurement accuracy and boiler balance calculation in theory. The empirical part of this work concentrates on the creation of the balance calculation for the boiler in issue and on describing the work environment.
Resumo:
This report illustrates a comparative study of various joining methods involved in sheet metal production. In this report it shows the selection of joining methods, which includes comparing the advantages and disadvantages of a method over the other ones and choosing the best method for joining. On the basis of various joining process from references, a table is generated containing set of criterion that helps in evaluation of various sheet metal joining processes and in selecting the most suitable process for a particular product. Three products are selected and a comprehensive study of the joining methods is analyzed with the help of various parameters. The table thus is the main part of the analysis process of this study and can be advanced with the beneficial results. It helps in a better and easy understanding and comparing the various methods, which provides the foundation of this study and analysis. The suitability of the joining method for various types of cases of different sheet metal products can be tested with the help of this table. The sections of the created table display the requirements of manufacturing. The important factor has been considered and given focus in the table, as how the usage of these parameters is important in percentages according to particular or individual case. The analysis of the methods can be extended or altered by changing the parameters according to the constraint. The use of this table is demonstrated by pertaining the cases from sheet metal production.