12 resultados para thermo-sensitive polymers
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tässä kirjallisuustyössä tutkittiin atomikerroskasvatuksen (ALD) soveltamista kemiantekniikassa. Työn alussa kerrottiin atomikerroskasvatuksesta, sen toimintaperiaatteista ja prosessitekniikasta. Tämän jälkeen tutkittiin viittä eri kemiantekniikan sovellusta, jotka olivat polymeerien pinnoittaminen, heterogeenisten katalyyttien syntetisointi, membraanien modifiointi, korroosionesto ja kaasunilmaisimet. ALD on ohutkalvotekniikka, jolla voidaan valmistaa nanometrin tai jopa Ångströmin (1 Å = 0.1 nm) tarkkuudella epäorgaanisia materiaalikerroksia, jotka yleensä ovat metallioksideja, kuten alumiinioksidi. ALD perustuu kaasu-kiintoainereaktioihin, joissa kaasumaiset kemialliset prekursorit reagoivat vuorotellen kasvualustan kanssa. Tyypilliset prekursorit ovat metalliligandi ja vesi, joka on yleisin hapen lähde ALD-reaktioissa. ALD−reaktiot suoritetaan yleensä matalassa paineessa (100−200 Pa) ja korkeassa lämpötilassa (200–400 °C) suljetussa reaktorikammiossa. ALD-prosesseissa voidaan hyödyntää myös plasmaa alentamaan reaktiolämpötiloja. Plasman avulla prekursoreista luodaan hyvin reaktiivisia radikaaleja, jotka voivat reagoida jopa huoneenlämmössä. Lämpöherkkiä polymeerejä voidaan pinnoittaa ohutkalvoilla, joilla voidaan lisätä esimerkiksi pakkausmateriaalien suojaa happea ja vesihöyryä vastaan. ALD:llä voidaan syntetisoida tarkasti nanomittakaavan heterogeenisiä katalyyttejä, joilla on korkea dispersio tukimateriaalin pinnalla. ALD:n avulla voidaan säästää katalyyttimateriaalia menettämättä katalyytin aktiivisuutta, mikä on tärkeää monien katalyyttisovellusten taloudellisuuden kannalta, esimerkiksi polttokennot. ALD soveltuu hyvin membraanien modifiointiin, koska kaasumaiset prekursorit leviävät tasaisesti membraanin huokosiin. Membraanien pinnoittamisella pyritään vaikuttamaan, selektiivisyyteen, hydrofiilisyyteen, liuotinkestävyyteen, huokoskokoon ja sen jakaumaan. Lisäksi membraaneja voidaan pinnoittaa katalyyttisillä ohutkalvoilla, mikä on tärkeää nanoreaktoreiden kehityksen kannalta. ALD:llä voidaan pinnoittaa esimerkiksi terästä, ja vähentää täten teräksen korroosiota. Puolijohtavia metallioksideja voidaan käyttää kaasunilmaisimina, joiden valmistuksessa ALD:n tarkkuudesta on suurta hyötyä.
Resumo:
Työn tavoitteena oli luoda asiakaspalveluprosessin mittaristo päivittäisen operatiivisen toiminnan seuraamiseksi ja parantamiseksi. Tarkoituksena oli mitata tilaustoimitusketjun suorituskykyä sekä tutkia mahdollisia kehitys ja parannuskohteita. Työ tehtiin Borealis Polymers Oy:n Fenolin Liiketoimintayksikölle. Yhtiön käytössä on Balanced Scorecard KPI- mittaristo. Asiakaspalveluprosessin mittaristo luotiin BSC asiakasnäkökulman mukaisesti soveltuen yhtiön toimintaympäristöön ja tavoitteisiin. Mittariston tarkoituksena on täydentää KPI- mittareita keskittyen päivittäisen asiakaspalveluprosessin suorituskyvyn ja asiakastyytyväisyyden parantamiseen. Asiakaspalveluprosessia kuvaavia mittareita testattiin suorittamalla asiakastyytyväisyyskysely, joka käytännössä toteutettiin sähköpostitse tehtynä tyytyväisyysmittauksena. Mittauksella haluttiin selvittää asiakastyytyväisyyden taso, palvelun eritekijöiden suhteellinen tärkeys asiakkaille eli mitkä laadun tekijät ovat asiakkaille tärkeimmät sekä miten asiakas kokee Borealiksen asiakaspalvelun suhteessa kilpailijoihin. Asiakaspalvelukysely on osa yhtiön kuluen vuoden aikana tehtävää asiakastyytyväisyysselvitystä. Lisäksi työn tavoitteena oli luoda jatkuvan toiminnan seuraamiseksi tulevaisuutta varten mittarit asiakkaille tärkeimpien laadun tekijöiden seuraamiseksi.
Resumo:
Position sensitive particle detectors are needed in high energy physics research. This thesis describes the development of fabrication processes and characterization techniques of silicon microstrip detectors used in the work for searching elementary particles in the European center for nuclear research, CERN. The detectors give an electrical signal along the particles trajectory after a collision in the particle accelerator. The trajectories give information about the nature of the particle in the struggle to reveal the structure of the matter and the universe. Detectors made of semiconductors have a better position resolution than conventional wire chamber detectors. Silicon semiconductor is overwhelmingly used as a detector material because of its cheapness and standard usage in integrated circuit industry. After a short spread sheet analysis of the basic building block of radiation detectors, the pn junction, the operation of a silicon radiation detector is discussed in general. The microstrip detector is then introduced and the detailed structure of a double-sided ac-coupled strip detector revealed. The fabrication aspects of strip detectors are discussedstarting from the process development and general principles ending up to the description of the double-sided ac-coupled strip detector process. Recombination and generation lifetime measurements in radiation detectors are discussed shortly. The results of electrical tests, ie. measuring the leakage currents and bias resistors, are displayed. The beam test setups and the results, the signal to noise ratio and the position accuracy, are then described. It was found out in earlier research that a heavy irradiation changes the properties of radiation detectors dramatically. A scanning electron microscope method was developed to measure the electric potential and field inside irradiated detectorsto see how a high radiation fluence changes them. The method and the most important results are discussed shortly.
Resumo:
The purpose of this study was to examine the current situation in substance abuse treatment units in Finland in taking non-Finnish speaking clients into consideration. The initiative for this research came from the Development of Alcohol and Drugs Intervention group at Stakes (National Research and Development Centre for Welfare and Health). Their aim was to gather information about the functioning and relevance of the quality assessment forms based on the quality recommendations for substance abuse work, filled in by substance abuse treatment units. The ethnic issue was chosen as the main approach in the study. The aim of this research was to answer the following questions: what is the readiness and competence in substance abuse treatment units in Finland to receive and encounter non-Finnish speaking clients, how is the quality of these services assessed and/or developed in the units, and what has been the role and functioning of the quality recommendations and quality assessment forms in working with non-Finnish speaking clients. The research methods used in the study were both quantitative and qualitative. The information concerning language services provided in the units was gathered from the quality assessment forms and basic information forms found in the database maintained by Stakes. The total amount of units found in the database was 267. In addition to that, semi-structured theme-interviews were carried out in four substance abuse treatment units in order to get a more deep understanding of how the services function in practice. The few number of non-Finnish speaking clients in the units may explain to a certain degree the results of the research. The results however showed that there is still space for improving the services. In the light of quality recommendations, the degree of language options provided in substance abuse treatment units in Finland today is low. Also the quantity of interpreter services provided in the units is scarce. There could also be unified guidelines specially tailored for substance abuse treatment units on how to work with ethnic minorities, as the knowledge is currently adopted from several different instances. The quality recommendations as well as quality assessment forms were valued and applied in the units appropriately and were also perceived to have an effect on the functioning, and quality, in the units.
Resumo:
Suojakaasupakkaaminen on lisääntynyt voimakkaasti viime vuosina elintarvikkeiden pakkaamisessa sillä pakkaamalla elintarvike suojakaasuun voidaan sen hyllyikää pidentää ilman säilöntäaineita. Tällainen pakkaaminen vaatii kuitenkin täysin kaasutiiviin pakkauksen, jonka kaasunläpäisevyys on myös alhainen. Yleisimmin käytetyt pakkausmateriaalit suojakaasupakkaamisessa ovat monikerroksiset muovimateriaalit, joissa yhdistyy monen eri muovin parhaimmat ominaisuudet. Yleisimmin käytettyjä muovilaatuja näissä monikerrosrakenteissa ovat PE, PET, PA ja EVOH polymeerit. Myös muita perinteisiä polymeerejä käytetään jonkin verran näissä rakenteissa. Uudemmat muovilaadut, kuten biohajoavat muovit, eivät ole vielä yleistyneet kaupallisessa käytössä pääasiallisesti niiden korkean hinnan vuoksi. Muovisten pakkausten korvaamista esimerkiksi muovipäällystetyillä kartonkipakkauksilla on viime vuosien aikana tutkittu enenevissä määrin. Muovipakkausten korvaamista helpommin kierrätettävillä ja mahdollisesti biohajoavilla materiaaleilla edistävät EU:n direktiivit, jotka käsittelevät pakkausjätteen käsittelyä. Kartonkivuokien saumaamista kaasutiiviisti tutkittiin myös tässä työssä. Tavoitteena oli löytää pakkaus, joka soveltuisi kanasuikaleiden pakkaamiseen suojakaasuun. Kana on herkkä mikrobiologiselle hajoamiselle, minkä johdosta se tulee pakata suojakaasuun jossa happipitoisuuden tulee olla alle 1 % pakkauspäivästä viimeiseen käyttöpäivään saakka. Suorittamalla erilaisia tiiveystutkimuksia voitiin osoittaa, että kartonkivuoka on mahdollista saumata kaasutiiviisti luotettavalla tavalla. Tämä vaatii kuitenkin kartonkivuokien valmistuksen optimoimista päällystemuovikerroksen ja kartongin paksuuden mukaan sekä kannen saumaamista optimoiduilla saumausparametreilla. Tiivein vuoka saavutettiin muovifilmikannella, jonka saumaus perustui samaan muoviin kuin vuoan saumaus. Polyeteenillä saavutettiin tiivein ja kestävin saumaustulos.
Resumo:
Cardiac troponins (cTns) are the recommended biochemical markers in the diagnosis of myocardial infarction (MI). They are very sensitive and tissue-specific but are limited by their delayed appearance in the circulation. Biochemical markers with more rapid release kinetics, e.g. myoglobin and especially heart-type fatty acid-binding protein (H-FABP), have been used to enhance the early identification of MI. The implementation of cTns into clinical practice has shown that cardiomyocyte injury occurs in many other clinical conditions than MI. The aim of this study was to evaluate the impact of modern and highly sensitive cTnI assays on the early diagnosis of MI. In a patient cohort with suspected MI, such a sensitive cTnI assay enhanced the early diagnostic accuracy when compared to a less sensitive cTnI assay and to myoglobin. When compared to H-FABP during the early hours after symptom onset, the sensitive cTnI assay showed at least similar and, after 6 hours, superior diagnostic accuracy. A positive cTnI test result had superior prognostic value when compared to H-FABP, even among early presenters. The prognostic value of cTn in acute heart failure (AHF) was evaluated in 364 patients who participated in the FINN-AKVA study. The patients presented with AHF but no acute coronary syndrome (ACS). Up to half of the patients had elevated cTn levels which were associated with higher 6-month mortality. The magnitude of cTn elevation was directly proportional to mortality. Finally, the clinical spectrum of cTnI elevations was evaluated in 991 cTnI positive emergency department (ED) patients. 83% of the patients had MI and 17% had cTnI elevation due to other clinical conditions. The latter patient group was characterized by lower absolute cTnI levels and – importantly – higher in-hospital mortality when compared to the MI patients. In conclusion, the use of a highly sensitive cTnI assay enhances the early diagnostic accuracy and risk stratification in suspected MI patients. Cardiac troponin elevations are highly prevalent also in other acute clinical conditions and indicate an adverse outcome of these patients.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.
Resumo:
Planar, large area, position sensitive silicon detectors are widely utilized in high energy physics research and in medical, computed tomography (CT). This thesis describes author's research work relating to development of such detector components. The key motivation and objective for the research work has been the development of novel, position sensitive detectors improving the performance of the instruments they are intended for. Silicon strip detectors are the key components of barrel-shaped tracking instruments which are typically the innermost structures of high energy physics experimental stations. Particle colliders such as the former LEP collider or present LHC produce particle collisions and the silicon strip detector based trackers locate the trajectories of particles emanating from such collisions. Medical CT has become a regular part of everyday medical care in all developed countries. CT scanning enables x-ray imaging of all parts of the human body with an outstanding structural resolution and contrast. Brain, chest and abdomen slice images with a resolution of 0.5 mm are possible and latest CT machines are able to image whole human heart between heart beats. The two application areas are presented shortly and the radiation detection properties of planar silicon detectors are discussed. Fabrication methods and preamplifier electronics of the planar detectors are presented. Designs of the developed, large area silicon detectors are presented and measurement results of the key operating parameters are discussed. Static and dynamic performance of the developed silicon strip detectors are shown to be very satisfactory for experimental physics applications. Results relating to the developed, novel CT detector chips are found to be very promising for further development and all key performance goals are met.
Resumo:
Ion exchange membranes are indispensable for the separation of ionic species. They can discriminate between anions and cations depending on the type of fixed ionic group present in the membrane. These conventional ion exchange membranes (CIX) have exceptional ionic conductivity, which is advantageous in various electromembrane separation processes such as electrodialysis, electrodeionisation and electrochemical ion exchange. The main disadvantage of CIX membranes is their high electrical resistance owing to the fact that the membranes are electronically non conductive. An alternative can be electroactive ion exchange membranes, which are ionically and electronically conducting. Polypyrrole (PPy) is a type of electroactive ion exchange material as well as a commonly known conducting polymer. When PPy membranes are repeatedly reduced and oxidised, ions are pumped through the membrane. The main aim of this thesis was to develop electroactive cation transport membranes based on PPy for the selective transport of divalent cations. Membranes developed composed of PPy films deposited on commercially available support materials. To carry out this study, cation exchange membranes based on PPy doped with immobile anions were prepared. Two types of dopant anions known to interact with divalent metal ions were considered, namely 4-sulphonic calix[6]arene (C6S) and carboxylated multiwalled carbon nanotubes (CNT). The transport of ions across membranes containing PPy doped with polystyrene sulphonate (PSS) and PPy doped with para-toluene sulphonate (pTS) was also studied in order to understand the nature of ion transport and permeability across PPy(CNT) and PPy(C6S) membranes. In the course of these studies, membrane characterisation was performed using electrochemical quartz crystal microbalance (EQCM) and scanning electron microscopy (SEM). Permeability of the membranes towards divalent cations was explored using a two compartment transport cell. EQCM results demonstrated that the ion exchange behaviour of polypyrrole is dependent on a number of factors including the type of dopant anion present, the type of ions present in the surrounding medium, the scan rate used during the experiment and the previous history of the polymer film. The morphology of PPy films was found to change when the dopant anion was varied and even when the thickness of the film was altered in some cases. In nearly all cases the permeability of the membranes towards metal ions followed the order K+ > Ca2+ > Mn2+. The one exception was PPy(C6S), for which the permeability followed the order Ca2+ ≥ K+ > Mn2+ > Co2+ > Cr3+. The above permeability sequences show a strong dependence on the size of the metal ions with metal ions having the smallest hydrated radii exhibiting the highest flux. Another factor that affected the permeability towards metal ions was the thickness of the PPy films. Films with the least thickness showed higher metal ion fluxes. Electrochemical control over ion transport across PPy(CNT) membrane was obtained when films composed of the latter were deposited on track-etched Nucleopore® membranes as support material. In contrast, the flux of ions across the same film was concentration gradient dependent when the polymer was deposited on polyvinylidene difluoride membranes as support material. However, electrochemical control over metal ion transport was achieved with a bilayer type of PPy film consisting of PPy(pTS)/PPy(CNT), irrespective of the type of support material. In the course of studying macroscopic charge balance during transport experiments performed using a two compartment transport cell, it was observed that PPy films were non-permselective. A clear correlation between the change in pH in the receiving solution and the ions transported across the membrane was observed. A decrease in solution pH was detected when the polymer membrane acted primarily as an anion exchanger, while an increase in pH occurred when it functioned as a cation exchanger. When there was an approximately equal flux of anions and cations across the polymer membrane, the pH in the receiving solution was in the range 6 - 8. These observations suggest that macroscopic charge balance during the transport of cations and anions across polypyrrole membranes was maintained by introduction of anions (OH-) and cations (H+) produced via electrolysis of water.
Resumo:
Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).
Resumo:
Electrochromism, the phenomenon of reversible color change induced by a small electric charge, forms the basis for operation of several devices including mirrors, displays and smart windows. Although, the history of electrochromism dates back to the 19th century, only the last quarter of the 20th century has its considerable scientific and technological impact. The commercial applications of electrochromics (ECs) are rather limited, besides top selling EC anti-glare mirrors by Gentex Corporation and airplane windows by Boeing, which made a huge commercial success and exposed the potential of EC materials for future glass industry. It is evident from their patents that viologens (salts of 4,4ʹ-bipyridilium) were the major active EC component for most of these marketed devices, signifying the motivation of this thesis focusing on EC viologens. Among the family of electrochromes, viologens have been utilized in electrochromic devices (ECDs) for a while, due to its intensely colored radical cation formation induced by applying a small cathodic potential. Viologens can be synthesized as oligomer or in the polymeric form or as functionality to conjugated polymers. In this thesis, polyviologens (PVs) were synthesized starting from cyanopyridinium (CNP) based monomer precursors. Reductive coupling of cross-connected cyano groups yields viologen and polyviologen under successive electropolymerization using for example the cyclic voltammetry (CV) technique. For further development, a polyviologen-graphene composite system was fabricated, focusing at the stability of the PV electrochrome without sacrificing its excellent EC properties. High electrical conductivity, high surface area offered by graphene sheets together with its non-covalent interactions and synergism with PV significantly improved the electrochrome durability in the composite matrix. The work thereby continued in developing a CNP functionalized thiophene derivative and its copolymer for possible utilization of viologen in the copolymer blend. Furthermore, the viologen functionalized thiophene derivative was synthesized and electropolymerized in order to explore enhancement in the EC contrast and overall EC performance. The findings suggest that such electroactive viologen/polyviologen systems and their nanostructured composite films as well as viologen functionalized conjugated polymers, can be potentially applied as an active EC material in future ECDs aiming at durable device performances.