7 resultados para substitution of petroleum

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tämän tutkielman tavoitteena on selvittää mitkä riskitekijät vaikuttavat osakkeiden tuottoihin. Arvopapereina käytetään kuutta portfoliota, jotka ovat jaoteltu markkina-arvon mukaan. Aikaperiodi on vuoden 1987 alusta vuoden 2004 loppuun. Malleina käytetään pääomamarkkinoiden hinnoittelumallia, arbitraasihinnoitteluteoriaa sekä kulutuspohjaista pääomamarkkinoiden hinnoittelumallia. Riskifaktoreina kahteen ensimmäiseen malliin käytetään markkinariskiä sekä makrotaloudellisia riskitekijöitä. Kulutuspohjaiseen pääomamarkkinoiden hinnoinoittelumallissa keskitytään estimoimaan kuluttajien riskitottumuksia sekä diskonttaustekijää, jolla kuluttaja arvostavat tulevaisuuden kulutusta. Tämä työ esittelee momenttiteorian, jolla pystymme estimoimaan lineaarisia sekä epälineaarisia yhtälöitä. Käytämme tätä menetelmää testaamissamme malleissa. Yhteenvetona tuloksista voidaan sanoa, että markkinabeeta onedelleen tärkein riskitekijä, mutta löydämme myös tukea makrotaloudellisille riskitekijöille. Kulutuspohjainen mallimme toimii melko hyvin antaen teoreettisesti hyväksyttäviä arvoja.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Gulf of Finland is said to be one of the densest operated sea areas in the world. It is a shallow and economically vulnerable sea area with dense passenger and cargo traffic of which petroleum transports have a share of over 50 %. The winter conditions add to the risks of maritime traffic in the Gulf of Finland. It is widely believed that the growth of maritime transportation will continue also in the future. The Gulf of Finland is surrounded by three very different national economies with, different maritime transportation structures. Finland is a country of high GDP/per capita with a diversified economic structure. The number of ports is large and the maritime transportation consists of many types of cargoes: raw materials, industrial products, consumer goods, coal and petroleum products, and the Russian transit traffic of e.g. new cars and consumer goods. Russia is a large country with huge growth potential; in recent years, the expansion of petroleum exports has lead to a strong economic growth, which is also apparent in the growth of maritime transports. Russia has been expanding its port activities in the Gulf of Finland and it is officially aiming to transport its own imports and exports through the Russian ports in the future; now they are being transported to great extend through the Finnish, Estonian and other Baltic ports. Russia has five ports in the Gulf of Finland. Estonia has also experienced fast economic growth, but the growth has been slowing down already during the past couples of years. The size of its economy is small compared to Russia, which means the transported tonnes cannot be very massive. However, relatively large amounts of the Russian petroleum exports have been transported through the Estonian ports. The future of the Russian transit traffic in Estonia looks nevertheless uncertain and it remains to be seen how it will develop and if Estonia is able to find replacing cargoes if the Russian transit traffic will come to an end in the Estonian ports. Estonia’s own import and export consists of forestry products, metals or other raw materials and consumer goods. Estonia has many ports on the shores of the Gulf of Finland, but the port of Tallinn dominates the cargo volumes. In 2007, 263 M tonnes of cargoes were transported in the maritime traffic in the Gulf of Finland, of which the share of petroleum products was 56 %. 23 % of the cargoes were loaded or unloaded in the Finnish ports, 60 % in the Russian ports and 17 % in the Estonian ports. The largest ports were Primorsk (74.2 M tonnes) St. Petersburg (59.5 M tonnes), Tallinn (35.9 M tonnes), Sköldvik (19.8 M tonnes), Vysotsk (16.5 M tonnes) and Helsinki (13.4 M) tonnes. Approximately 53 600 ship calls were made in the ports of the Gulf of Finland. The densest traffic was found in the ports of St. Petersburg (14 651 ship calls), Helsinki (11 727 ship calls) and Tallinn (10 614 ship calls) in 2007. The transportation scenarios are usually based on the assumption that the amount of transports follows the development of the economy, although also other factors influence the development of transportation, e.g. government policy, environmental aspects, and social and behavioural trends. The relationship between the development of transportation and the economy is usually analyzed in terms of the development of GDP and trade. When the GDP grows to a certain level, especially the international transports increase because countries of high GDP produce, consume and thus transport more. An effective transportation system is also a precondition for the economic development. In this study, the following factors were taken into consideration when formulating the future scenarios: maritime transportation in the Gulf of Finland 2007, economic development, development of key industries, development of infrastructure and environmental aspects in relation to maritime transportation. The basic starting points for the three alternative scenarios were: • the slow growth scenario: economic recession • the average growth scenario: economy will recover quickly from current instability • the strong growth scenario: the most optimistic views on development will realize According to the slow growth scenario, the total tonnes for the maritime transportation in the Gulf of Finland would be 322.4 M tonnes in 2015, which would mean a growth of 23 % compared to 2007. In the average growth scenario, the total tonnes were estimated to be 431.6 M tonnes – a growth of 64 %, and in the strong growth scenario 507.2 M tonnes – a growth of 93%. These tonnes were further divided into petroleum products and other cargoes by country, into export, import and domestic traffic by country, and between the ports. For petroleum products, the share of crude oil and oil products was estimated and the number of tanker calls in 2015 was calculated for each scenario. However, the future development of maritime transportation in the GoF is dependent on so many societal and economic variables that it is not realistic to predict one exact point estimate value for the cargo tonnes for a certain scenario. Plenty of uncertainty is related both to the degree in which the scenario will come true as well as to the cause-effect relations between the different variables. For these reasons, probability distributions for each scenario were formulated by an expert group. As a result, a range for the total tonnes of each scenario was formulated and they are as follows: the slow growth scenario: 280.8 – 363 M tonnes (expectation value 322.4 M tonnes)

  • the average growth scenario: 404.1 – 465.1 M tonnes (expectation value 431.6 M tonnes)
  • the strong growth scenario: 445.4 – 575.4 M tonnes (expectation value 507.2 M tonnes) Three alternatives scenarios were evaluated to realize most likely with the following probability distribution:
  • the slow growth scenario: 35 %
  • the average growth scenario: 50 %
  • the strong growth scenario: 15 %. In other words, expert group evaluated the average growth scenario to be the most likely to realize, second likely was the slow growth scenario, and the strong growth scenario was evaluated to be the most unlikely to realize. In sum, it can be stated that the development of maritime transportation in the Gulf of Finland is dominated by the development of Russia, because Russia dominates the cargo volumes. Maritime transportation in Finland is expected to be more stable and, in any case, such a growth potential cannot be seen in Finland. The development of maritime transportation in Estonia is rather challenging to forecast at the moment but, on the other hand, the transported tonnes in the Estonian ports are relatively small. The shares of export and import of the maritime transportation are not expected to change radically in the reference period. Petroleum products will dominate the transports also in the future and the share of oil products will probably increase compared to the share of crude oil. In regard to the other cargoes, the transports of raw materials and bulk goods will probably be replaced to some extend by cargoes of high-value, which adds especially to the container transports. But in overall, substantial changes are not expected in the commodity groups transported by sea. The growth potential of the ports concentrates on the Russian ports, especially Primorsk and Ust-Luga, if investments will come true as planned. It is likely that the larger ports do better in the competition than the small ones due to the economies of scale and to the concentration of cargo flows. The average ship sizes will probably grow, but the growth potential is rather limited because of geographical conditions and of the maritime transportation structure in the Gulf of Finland. Climate change and other environmental aspects are becoming more central e.g. in transportation politics. These issues can affect the maritime transportation in the Gulf of Finland through, for instance, strict environmental requirements concerning the emissions from shipping, or the port investments. If environmental requirements raise costs, it can affect the demand of transportation. In the near future, the development of the maritime transportation in the Gulf of Finland is mainly dependent on the current economic instability. If it will lead to a longer lasting recession, the growth of the transported tonnes will slow down. But if the instability does not last long, it can be expected that the economic growth will continue and along with it also the growth of transported tonnes.

  • Relevância:

    90.00% 90.00%

    Publicador:

    Resumo:

    The usage of the non-wood pulps in furnishes for various paper grades is the real alternative for substitution of wood fibres in the papermaking. This is especially important now, when the prices for wood are increasing and forest resources are depleting in many regions of our planet. However, there are several problems associated with utilization of such pulps. In terms of the papermaking process one of the main problems is the poor dewatering of the non-wood pulps. This problem can be partially solved by means of retention aids. In the literature part were described technological features of the non-wood pulps as the raw materials for paper production. Moreover, overviews of the retention chemicals and methods for retention measurement were done; special attention was paid to the mechanisms of retention and drainage. Finally, factors affecting on the drainage and retention of non-wood pulps were considered holistically. Particular emphasis was put on the possibility of enzyme treatment for drainage improvement. It was stated that retention aids can significantly improve dewatering of non-wood pulps. In the experimental part the goal was to investigate influence of various microparticle retention aids on the drainage, retention and formation of furnish containing wheat straw pulp, obtained by novel pulping process (Formico™Fib). The parallel test were performed with reference furnish containing only wood pulps. It was found that Bentonite-CPAM retention aid can significantly improve drainage and retention; however formation seems be suffer from such additives. It was stated that performance of the Silica-Starch retention aid significantly depends on the starch dosing sequence and wet-end conditions; this system have shown better formation than other tested retention aids. Silica-CPAM retention aid have provided comparable results in retention and drainage with Bentonite-CPAM, while Silica-starch did not improve dewatering and yielded in lowest filler retention among other aids. Ultimately, optimal dosages for the tested retention chemicals have been suggested.

    Relevância:

    90.00% 90.00%

    Publicador:

    Resumo:

    The growth of the food packaging industry has raised more interest in bio-based fibre packing. The use of petroleum based packages is unfriendly to the environment while bio-based is a sustainable option for food packing. In this Master Thesis the aim was to discover how the press forming machineries runnability is affected by parameters of the press and how it also affects formability of paperboard trays. Familiarisation of the working operation parameters was done with the KAMA ST 75 flat-bed die cutting machine and the VP3-70 mould press. Some small test runs of moulding trays where done to get acquainted to the adjustment parameters of the machines. Literature study was done on how paperboards physical properties react to the forces applied during press forming. The study of what kind of defects to the paperboard tray might occur during forming process and the causes for these defects. Also how the parameters of the press forming machine affects formability of the tray. Maintenance procedures was done to the press forming machine to enhance the reliably of production process. Tool alignment measurement was done to determine proper alignment. Laboratory test of the physical properties of the test material was done to find any connection to how the test material performs in press forming. An evaluation criterion was made to evaluate the dimensions and defects of the tray. From the test result a conclusion can be drawn on how the parameters of the press forming process affect the paperboard material. Based on the results the adjustment the parameters of moulding machines to the mechanical properties of paperboard it is possible to produce high quality fibre passed trays for the food packaging industry.

    Relevância:

    80.00% 80.00%

    Publicador:

    Resumo:

    Työn aiheena oli tehdä muotoiltavissa oleva rasvankestävä pakkauskartonki. Polymeeridispersiopäällystettyjä pakkauskartonkeja käytetään kertakäyttöisissä tuotteissa kuten vuoissa, kupeissa ja lautasissa. Tuotteiden on kestettävä rasvaa niiden lopputarkoituksen mukaisesti. Pakkausala jatkaa vuosittaista kasvuaan vauhdilla. Uusia kierrätettäviä biopohjaisia ja luonnolle ystävällisempiä pakkaustuotteita on kehitettävä kasvun tyydyttämiseksi. Biopohjaiset pakkaustuotteet ovat mahdollisia ratkaisuja ympäristöön kohdistuvien ongelmien vähentämiseksi ja öljypohjaisten raaka-aineiden korvaajiksi. Diplomityön teoriaosuudessa keskityttiin dispersiopäällystyksessä käytettyihin biopolymeereihin ja niiden toimivuuteen suojaavina kalvoina. Teoriaosuudessa käsiteltiin myös rasvankestoa ja rasvankestävien tuotteiden materiaaliominaisuuksia. Kirjallisuuden perusteella havaittiin luonnonpolymeerien alhaisen kuiva-ainepitoisuuden ja korkean päällystemäärätarpeen muodostamat haasteet dispersiopäällystyksessä. Pohjakartongin karheudella ja tiiveydellä sekä suojaavan polymeerin kalvon rakenteella huomattiin olevan suuri merkitys rasvankeston saavuttamiseksi. Kokeellinen osa jakautui kolmeen osakokonaisuuteen: laboratoriokokeisiin, esipilotointiin ja varsinaiseen pilot-koeajoon. Esikokeiden perusteella suojaavat kalvot, joiden raaka-aineena käytettiin biopohjaisia dispersiopolymeerejä, antoivat riittäviä rasvankesto-ominaisuuksia, mutta eivät kestäneet konvertointia. Pienellä synteettisten polymeerien lisäyksellä pystyttiin parantamaan päällystettyjen kartonkien rasvankestoa sekä konvertoitavuutta. Pilot-koeajonäytteiden testaustulokset tukivat esikokeissa tehtyjä havaintoja. Tämän työn perusteella kohtuullinen lisäysmäärä synteettistä polymeeriä voi parantaa merkittävästi biopohjaisen suojaavan kalvon antamaa rasvankestoa sekä päällystetyn kartongin konvertoitavuutta.

    Relevância:

    80.00% 80.00%

    Publicador:

    Resumo:

    Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.

    Relevância:

    80.00% 80.00%

    Publicador:

    Resumo:

    This report introduces the ENPI project called “EMIR - Exploitation of Municipal and Industrial Residues” which was executed in a co-operation between Lappeenranta University of Technology (LUT), Saint Petersburg State University of Economics (SPbSUE), Saint Petersburg State Technical University of Plant Polymers (SPbSTUPP) and industrial partners from both Leningrad Region (LR), Russia and Finland. The main targets of the research were to identify the possibilities for deinking sludge management scenarios in co-operation with partner companies, to compare the sustainability of the alternatives, and to provide recommendations for the companies in the Leningrad Region on how to best manage deinking sludge. During the literature review, 24 deinking sludge utilization possibilities were identified, the majority falling under material recovery. Furthermore, 11 potential utilizers of deinking sludge were found within the search area determined by the transportation cost. Each potential utilizer was directly contacted in order to establish cooperation for deinking sludge utilization. Finally, four companies, namely, “Finnsementti” – a cement plant in Finland (S1), “St.Gobian Weber” – a light-weight aggregate plant in Finland (S2), “LSR-Cement” – a cement plant in LR (S3), and “Rockwool” – a stone wool plant in LR (S4) were seen as the most promising partners and were included in the economic and environmental assessments. Economic assessment using cost-benefit analysis (CBA) indicated that substitution of heavy fuel oil with dry deinking sludge in S2 was the most feasible option with a benefit/cost ratio (BCR) of 3.6 when all the sludge was utilized. At the same time, the use of 15% of the total sludge amount (the amount that could potentially be treated in the scenario) resulted in a BCR of only 0.16. The use of dry deinking sludge in the production of cement (S3) is a slightly more feasible option with a BCR of 1.1. The use of sludge in stone wool production is feasible only when all the deinking sludge is used and burned in an existing incineration plant. The least economically feasible utilization possibility is the use of sludge in cement production in Finland (S1) due to the high gate fee charged. Environmental assessment was performed applying internationally recognized life cycle assessment (LCA) methodologies: ISO 14040 and ISO 14044. The results of a consequential LCA stated that only S1 and S2 lead to a reduction of all environmental impacts within the impact categories chosen compared to the baseline scenario where deinking sludge is landfilled. Considering S1, the largest reduction of 13% was achieved for the global warming potential (GWP), whereas for S2, the largest decrease of abiotic depletion potential (ADP) was by 1.7%, the eutrophication potential (EP) by 1.8%, and a GWP of 2.1% was documented. In S3, the most notable increase of ADP and acidification potential (AP) by 2.6 and 1.5% was indicated, while the GWP was reduced by 12%, the largest out of all the impact categories. In S4, ADP and AP increased by 2.3 and 2.1% respectively, whereas ODP was reduced by 25%. During LCA, it was noticed that substitution of fuels causes a greater reduction of environmental impact (S1 and S2) than substitution of raw materials (S3 and S4). Despite a number of economically and environmentally acceptable deinking sludge utilization methods being assessed in the research, evaluation of bottlenecks and communications with companies’ representatives uncovered the fact that the availability of the raw materials consumed, and the risks associated with technological problems resulting from the sludge utilization, limited the willingness of industrial partners to start deinking sludge utilization. The research results are of high value for decision-makers at already existing paper mills since the result provide insights regarding alternatives to the deinking sludge utilization possibilities already applied. Thus, the research results support the maximum economic and environmental value recovery from waste paper utilization.