2 resultados para refining
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Työn tavoitteena oli optimoida LWC-paperitehtaan kahden hiomolinjan rejektinkäsittelyt. Uusituilla rejektilinjoilla on käytössä keskisakeusrejektinjauhatus. Työn keskeinen osa oli teräkoeajot, teräsarjoja tutkittiin kuusi, kolme molemmilla linjoilla. Kahdessa ensimmäisessä teräkoeajossa oli molemmilla linjoilla samanlaiset jauhinterät. Teräkoeajojen tuloksista havaittiin yleisellä tasolla, että suurin osa mitatuista ominaisuuksista parani jauhatusastetta nostettaessa. Ainoastaan repäisylujuus heikkeni. Terävaihtoehdoista pystyttiin poimimaan molemmille linjoille sopiva terävaihtoehto. Rejektinlajittelun havaittiin parantavan edelleen massan laatuominaisuuksia, paitsi repäisylujuutta. Toisena osuutena vertailtiin keskisakeusjauhimen terävaihtoehtoa, jolla saavutettiin hyviä tuloksia, toisen paperitehtaan korkeassa sakeudessa jauhettuun rejektiin. Korkeasakeusjauhimen terää ei erityisesti valikoitu koeajoa varten. Tuloksista havaittiin, että keskisakeusjauhimella saadaan aikaan varsin hyvää LWC-paperiin käytettävää massaa. Keskisakeudessa jauhettu massa oli monilta ominaisuuksiltaan jopa parempaa kuin korkeasakeusjauhimen massa. Työn kolmannessa osuudessa ajettiin rejektilinjalla sakeuskoeajo. Sakeuskoeajosta havaittiin, että optiset ominaisuudet olivat parhaimmillaan jauhimen MC-sakeusalueen keskivaiheilla. Jauhatussakeuden noustessa kuidut jäivät jäykemmiksi ja karkeammiksi. Tikkupitoisuus oli sitä pienempi, mitä alhaisempaa jauhatussakeutta käytettiin. Sakeudella ei ollut selvää vaikutusta lujuusominaisuuksiin. Tulosten perusteella paras jauhatussakeus keskisakeusjauhimella oli sakeusalueen puoliväli. Työn viimeisenä osana selvitettiin miten kytkentämuutos, jossa rejektilinjan viimeisen lajittimen rejekti käännettiin palaamaan jälkilajittelun sijaan rejektilinjan kaariseulalle, vaikutti koko hiomon kapasiteettiin ja rejektilinjan massan laatuun. Koeajojen tuloksena havaittiin, että kytkentämuutolla pystyttiin nostamaan koko hiomon kapasiteettia ja rejektilinjan akseptin laatu parani.
Resumo:
Data mining, as a heatedly discussed term, has been studied in various fields. Its possibilities in refining the decision-making process, realizing potential patterns and creating valuable knowledge have won attention of scholars and practitioners. However, there are less studies intending to combine data mining and libraries where data generation occurs all the time. Therefore, this thesis plans to fill such a gap. Meanwhile, potential opportunities created by data mining are explored to enhance one of the most important elements of libraries: reference service. In order to thoroughly demonstrate the feasibility and applicability of data mining, literature is reviewed to establish a critical understanding of data mining in libraries and attain the current status of library reference service. The result of the literature review indicates that free online data resources other than data generated on social media are rarely considered to be applied in current library data mining mandates. Therefore, the result of the literature review motivates the presented study to utilize online free resources. Furthermore, the natural match between data mining and libraries is established. The natural match is explained by emphasizing the data richness reality and considering data mining as one kind of knowledge, an easy choice for libraries, and a wise method to overcome reference service challenges. The natural match, especially the aspect that data mining could be helpful for library reference service, lays the main theoretical foundation for the empirical work in this study. Turku Main Library was selected as the case to answer the research question: whether data mining is feasible and applicable for reference service improvement. In this case, the daily visit from 2009 to 2015 in Turku Main Library is considered as the resource for data mining. In addition, corresponding weather conditions are collected from Weather Underground, which is totally free online. Before officially being analyzed, the collected dataset is cleansed and preprocessed in order to ensure the quality of data mining. Multiple regression analysis is employed to mine the final dataset. Hourly visits are the independent variable and weather conditions, Discomfort Index and seven days in a week are dependent variables. In the end, four models in different seasons are established to predict visiting situations in each season. Patterns are realized in different seasons and implications are created based on the discovered patterns. In addition, library-climate points are generated by a clustering method, which simplifies the process for librarians using weather data to forecast library visiting situation. Then the data mining result is interpreted from the perspective of improving reference service. After this data mining work, the result of the case study is presented to librarians so as to collect professional opinions regarding the possibility of employing data mining to improve reference services. In the end, positive opinions are collected, which implies that it is feasible to utilizing data mining as a tool to enhance library reference service.