7 resultados para primary airway epithelial cells

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Keratins (K) are cytoskeletal proteins mainly expressed in the epithelium and constitute the largest subgroup of intermediate filaments (IFs). Simple epithelial keratins (SEKs) K7-K8 and K18-K20 are the major IF elements in the colon. SEK mutations are known to cause around 30 human diseases, mainly affecting liver and skin. However, so far no strong associations between K8 mutations and the development of human colitis have been found. The keratin contribution to colonic health comes from the K8 knock-out (K8-/-) mouse model, which develops an early chronic inflammation and hyperproliferation in the colon. The aim of this thesis was to investigate how keratins contribute to intestinal health and disease mainly by the experimental analysis using the K8-/- mouse colon and cell culture models. The work described here is divided into three studies. The first study revealed involvement of keratins in Notch1 signaling, which is the master regulator of cell fate in the colon. Immunoprecipitation and immunostaining, both in vitro and in vivo showed that K8 binds and co-localizes with Notch1. Interestingly, overexpression of keratins enhanced Notch1 levels and stabilized Notch intracellular domain (NICD), leading to higher activity of Notch signaling. The dramatic decrease in Notch activity in the K8-/- colon resulted in a differentiation shift towards goblet and enteroendocrine cells. The second study focused on the involvement of keratins in colitis-associated cancer (CAC). Although, the K8-/- inflamed colon did not develop colorectal cancer (CRC) spontaneously, it was dramatically more susceptible to induced CRC in two CRC models: azoxymethane (AOM) and multiple intestinal neoplasia (ApcMin/+). To understand how the loss of K8 contributes to CAC, the epithelial inflammasome signaling pathway was analyzed. The released component of active inflammasome, cleaved caspase-1 and its downstream protein, interleukin (IL)-18, were significantly increased in K8-/- and K8-/-ApcMin/+ colons. The inflammasome pathway has recently been suggested to control the levels of IL-22 binding protein (IL-22BP), which is a negative regulator of IL-22 activity. Interestingly, the activated inflammasome correlated with an upregulation of IL-22 and a complete loss of IL-22BP in the K8-null colons. The activation of IL-22 was confirmed by increased levels of downstream signaling, which is phosphorylated signal transducer and activator of transcription 3 (P-STAT3), a transcription factor promoting proliferation and tissue regeneration in the colon. The objective of the third study, was to examine the role of keratins in colon energy metabolism. A proteomic analysis identified mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) as the major ownregulated protein in the K8-/- colonocytes. HMGCS2 is the rate-limiting enzyme in ketogenesis, where energy from bacterially produced short chain fatty acids (SCFAs), mainly butyrate, is converted into ketone bodies in colonic epithelium. Lower levels and activity of HMGCS2 in the K8-/- colon resulted in a blunted ketogenesis. The studies upstream from HMGCS2, identified decreased levels of the SCFA-transporter monocarboxylate transporter 1 (MCT1), which led to increased SCFA content in the stool suggesting impaired butyrate transport through the colonic epithelium. Taken together, the results of the herein thesis indicate that keratins are essential regulators of colon homeostasis, in particular epithelial differentiation, tumorigenesis and energy metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral mucosa is a frequent site of primary herpes simplex virus type 1 (HSV-1) infection, whereas intraoral recurrent disease is very rare. Instead, reactivation from latency predominantly results in asymptomatic HSV shedding to saliva or recurrent labial herpes (RLH) with highly individual frequency. The current study aimed to elucidate the role of human oral innate and acquired immune mechanisms in modulation of HSV infection in orolabial region. Saliva was found to neutralize HSV-1, and to protect cells from infection independently of salivary antibodies. Neutralization capacity was higher in saliva from asymptomatic HSV-seropositive individuals compared to subjects with history of RLH or seronegative controls. Neutralization was at least partially associated with salivary lactoferrin content. Further, lactoferrin and peroxidase-generated hypothiocyanite were found to either neutralize HSV-1 or interfere with HSV-1 replication, whereas lysozyme displayed no anti-HSV-1 activity. Lactoferrin was also shown to modulate HSV-1 infection by inhibiting keratinocyte proliferation. RLH susceptibility was further found to be associated with Th2 biased cytokine responses against HSV, and a higher level of anti- HSV-IgG with Th2 polarization, indicating lack of efficiency of humoral response in the control of HSV disease. In a three-dimensional cell culture, keratinocytes were found to support both lytic and nonproductive infection, suggesting HSV persistence in epithelial cells, and further emphasizing the importance of peripheral immune control of HSV. These results suggest that certain innate salivary antimicrobial compounds and Th1 type cellular responses are critically important in protecting the host against HSV disease, implying possible applications in drug, vaccine and gene therapy design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-testicular sperm maturation occurs in the epididymis. The ion concentration and proteins secreted into the epididymal lumen, together with testicular factors, are believed to be responsible for the maturation of spermatozoa. Disruption of the maturation of spermatozoa in the epididymis provides a promising strategy for generating a male contraceptive. However, little is known about the proteins involved. For drug development, it is also essential to have tools to study the function of these proteins in vitro. One approach for screening novel targets is to study the secretory products of the epididymis or the G protein-coupled receptors (GPCRs) that are involved in the maturation process of the spermatozoa. The modified Ca2+ imaging technique to monitor release from PC12 pheochromocytoma cells can also be applied to monitor secretory products involved in the maturational processes of spermatozoa. PC12 pheochromocytoma cells were chosen for evaluation of this technique as they release catecholamines from their cell body, thus behaving like endocrine secretory cells. The results of the study demonstrate that depolarisation of nerve growth factor -differentiated PC12 cells releases factors which activate nearby randomly distributed HEL erythroleukemia cells. Thus, during the release process, the ligands reach concentrations high enough to activate receptors even in cells some distance from the release site. This suggests that communication between randomly dispersed cells is possible even if the actual quantities of transmitter released are extremely small. The development of a novel method to analyse GPCR-dependent Ca2+ signalling in living slices of mouse caput epididymis is an additional tool for screening for drug targets. By this technique it was possible to analyse functional GPCRs in the epithelial cells of the ductus epididymis. The results revealed that, both P2X- and P2Y-type purinergic receptors are responsible for the rapid and transient Ca2+ signal detected in the epithelial cells of caput epididymides. Immunohistochemical and reverse transcriptase-polymerase chain reaction (RTPCR) analyses showed the expression of at least P2X1, P2X2, P2X4 and P2X7, and P2Y1 and P2Y2 receptors in the epididymis. Searching for epididymis-specific promoters for transgene delivery into the epididymis is of key importance for the development of specific models for drug development. We used EGFP as the reporter gene to identify proper promoters to deliver transgenes into the epithelial cells of the mouse epididymis in vivo. Our results revealed that the 5.0 kb murine Glutathione peroxidase 5 (GPX5) promoter can be used to target transgene expression into the epididymis while the 3.8 kb Cysteine-rich secretory protein-1 (CRISP-1) promoter can be used to target transgene expression into the testis. Although the visualisation of EGFP in living cells in culture usually poses few problems, the detection of EGFP in tissue sections can be more difficult because soluble EGFP molecules can be lost if the cell membrane is damaged by freezing, sectioning, or permeabilisation. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilise EGFP may also destroy its usefulness as a fluorescent reporter. We therefore developed a novel tissue preparation and preservation techniques for EGFP. In addition, fluorescence spectrophotometry with epididymal epithelial cells in suspension revealed the expression of functional purinergic, adrenergic, cholinergic and bradykinin receptors in these cell lines (mE-Cap27 and mE-Cap28). In conclusion, we developed new tools for studying the role of the epididymis in sperm maturation. We developed a new technique to analyse GPCR dependent Ca2+ signalling in living slices of mouse caput epididymis. In addition, we improved the method of detecting reporter gene expression. Furthermore, we characterised two epididymis-specific gene promoters, analysed the expression of GPCRs in epididymal epithelial cells and developed a novel technique for measurement of secretion from cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biology is turning into an information science. The science of systems biology seeks to understand the genetic networks that govern organism development and functions. In this study the chicken was used as a model organism in the study of B cell regulatory factors. These studies open new avenues for plasma cell research by connecting the down regulation of the B cell gene expression program directly to the initiation of plasma cell differentiation. The unique advantages of the DT40 avian B cell model system, specifically its high homologous recombination rate, were utilized to study gene regulation in Pax5 knock out cell lines and to gain new insights into the B cell to plasma cell transitions that underlie the secretion of antibodies as part of the adaptive immune response. The Pax5 transcription factor is central to the commitment, development and maintenance of the B cell phenotype. Mice lacking the Pax5 gene have an arrest in development at the pro-B lymphocyte stage while DT40 cells have been derived from cells at a more mature stage of development. The DT40 Pax5-/- cells exhibited gene expression similarities with primary chicken plasma cells. The expression of the plasma cell transcription factors Blimp-1 and XBP-1 were significantly upregulated while the expression of the germinal centre factor BCL6 was diminished in Pax5-/- cells, and this alteration was normalized by Pax5 re-introduction. The Pax5-deficient cells further manifested substantially elevated secretion of IgM into the supernatant, another characteristic of plasma cells. These results for the first time indicated that the downregulation of the Pax5 gene in B cells promotes plasma cell differentiation. Cross-species meta-analysis of chicken and mouse Pax5 gene knockout studies uncovers genes and pathways whose regulatory relationship to Pax5 has remained unchanged for over 300 million years. Restriction of the hematopoietic stem cell fate to produce T, B and NK cell lineages is dependent on the Ikaros and its molecular partners, the closely related Helios and Aiolos. Ikaros family members are zinc finger proteins which act as transcriptional repressors while helping to activate lymphoid genes. Helios in mice is expressed from the hematopoietic stem cell level onwards, although later in development its expression seems to predominate in the T cell lineage. This study establishes the emergence and sequence of the chicken Ikaros family members. Helios expression in the bursa of Fabricius, germinal centres and B cell lines suggested a role for Helios in the avian B-cell lineage, too. Phylogenetic studies of the Ikaros family connect the expansion of the Ikaros family, and thus possibly the emergence of the adaptive immune system, with the second round of genome duplications originally proposed by Ohno. Paralogs that have arisen as a result of genome-wide duplications are sometimes termed ohnologs – Ikaros family proteins appear to fit that definition. This study highlighted the opportunities afforded by the genome sequencing efforts and somatic cell reverse genetics approaches using the DT40 cell line. The DT40 cell line and the avian model system promise to remain a fruitful model for mechanistic insight in the post-genomic era as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence of inflammatory based diseases has increased in industrialized countries over the last decades. For allergic diseases, two primary hypotheses have been proposed to explain this phenomenon, namely the hygiene and dietary evolution based hypothesis. Particularly, the reduced early exposure to microbes and an increase in the amount of polyunsaturated fatty acids (especially n-6 PUFA) in the diet have been discussed. Often, these two factors have been studied independently, even though both factors have been shown to possess potential health benefits and their mode of action to share similar mechanisms. The hypothesis of the present study was that demonstrate that PUFA and probiotics are not separate entities as such but do interact with each other. In the present study, we investigated whether maternal diet and atopic status influence the PUFA composition of breast milk and serum fatty acids of infants, and whether the fatty acid absorption and utilization of infant formula fatty acids is affected by supplementation of infant formula with probiotic bacteria (Lactobacillus GG and Bifidobacterium lactis Bb-12). Moreover, we investigated the mechanisms by which different PUFA influence the physicochemical and functional properties of probiotics as well as functionality of epithelial cells in vitro. We demonstrated a carry-over effect of dietary fatty acids from maternal diet via breast milk into infants’ serum lipid fatty acids. Our data confirmed the previously shown allergy –related PUFA level imbalances, though it did not fully support the impaired desaturation and elongation capacity hypothesis. We also showed that PUFA incorporation into phospholipids of infants was influenced by probiotics in infant formula in a strain dependent manner. Especially,Bifidobacterium lactis Bb-12 in infant formula promoted the utilization of n-3 PUFA. Mechanistically, we demonstrated that probiotics (Lactobacillus GG, Lactobacillus casei Shirota and Lactobacillus bulgaricus) did incorporate and interconvert exogenous free PUFA in the growth medium into bacterial fatty acids strain and PUFA dependently. In general, high concentrations of free PUFA inhibited the growth and mucus adhesion of probiotics, whereas low concentrations of specific long chain PUFA were found to promote the growth and mucus adhesion of Lactobacillus casei Shirota. These effects were paralleled with only minor alterations in hydrophobicity and electron donor – electron acceptor properties of lactobacilli. Furthermore, free PUFA were also demonstrated to alter the adhesion capacity of the intestinal epithelial cells; n-6 PUFA tended to inhibit the Caco-2 adhesion of probiotics, whereas n-3 PUFA had either no or minor effects or even promote the bacterial adhesion (especially Lactobacillus casei Shirota) to PUFA treated Caco-2 cells. The results of this study demonstrate the close and bilateral interactions between dietary PUFA and probiotics. Probiotics were shown to influence the absorption and utilization of dietary PUFA, whereas PUFA were shown to alter the functional properties of both probiotics and mucosal epithelia. These findings suggest that a more thorough understanding of interactions between PUFA and intestinal microbiota is a prerequisite, when the beneficial effects of new functional foods containing probiotics are designed and planned for human intervention studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

y+LAT1 is a transmembrane protein that, together with the 4F2hc cell surface antigen, forms a transporter for cationic amino acids in the basolateral plasma membrane of epithelial cells. It is mainly expressed in the kidney and small intestine, and to a lesser extent in other tissues, such as the placenta and immunoactive cells. Mutations in y+LAT1 lead to a defect of the y+LAT1/4F2hc transporter, which impairs intestinal absorbance and renal reabsorbance of lysine, arginine and ornithine, causing lysinuric protein intolerance (LPI), a rare, recessively inherited aminoaciduria with severe multi-organ complications. This thesis examines the consequences of the LPI-causing mutations on two levels, the transporter structure and the Finnish patients’ gene expression profiles. Using fluorescence resonance energy transfer (FRET) confocal microscopy, optimised for this work, the subunit dimerisation was discovered to be a primary phenomenon occurring regardless of mutations in y+LAT1. In flow cytometric and confocal microscopic FRET analyses, the y+LAT1 molecules exhibit a strong tendency for homodimerisation both in the presence and absence of 4F2hc, suggesting a heterotetramer for the transporter’s functional form. Gene expression analysis of the Finnish patients, clinically variable but homogenic for the LPI-causing mutation in SLC7A7, revealed 926 differentially-expressed genes and a disturbance of the amino acid homeostasis affecting several transporters. However, despite the expression changes in individual patients, no overall compensatory effect of y+LAT2, the sister y+L transporter, was detected. The functional annotations of the altered genes included biological processes such as inflammatory response, immune system processes and apoptosis, indicating a strong immunological involvement for LPI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is the main cause of death among cancer patients. In order to initiate the metastatic cascade cancer cells have to undergo epithelial-to-mesenchymal transition (EMT). In EMT epithelial cells lose their cell-cell and cell-extracellular matrix (ECM) contacts and become more motile. The expression of the transcription factor Slug and of the mesenchymal intermediate filament vimentin is induced during EMT. Vimentin is often overexpressed in malignant epithelial cancers but the functional role of vimentin remains incompletely understood. In addition, kinases such as AKT and ERK are known to be involved in the regulation of EMT and cancer cell motility but the mechanisms underlining their functions are often unclear. Integrins are heterodimeric receptors that attach cells to the surrounding tissue and participate in regulating cell migration and invasion. Changes in integrin activity are linked to increased cell motility and further cancer metastasis. The aim for my PhD studies was to investigate the role of cellular signalling pathways and vimentin in the regulation of cancer cell motility and EMT. Our results revealed that in prostate cancer the downregulation of AKT1 and AKT2, but not AKT3, induces activation of cell surface 1-integrins leading to enhanced cell adhesion, migration and invasion. In addition, our findings demonstrated a reciprocal regulatory interaction between vimentin and ERK2 facilitating ERK-mediated phosphorylation of Slug at serine-87 (S87) in breast cancer. Surprisingly, Slug S87 phosphorylation is dispensable for E-cadherin repression but essential for the induction of vimentin and Axl expression in early onset of EMT. Our findings reveal previously unknown mechanistic information of how prostate and breast cancer cell motility and disease progression is regulated