19 resultados para pore wetting method
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The offset printing process is complex and involves the meeting of two essentially complex materials, printing ink and paper, upon which the final product is formed. It can therefore be expected that a multitude of chemical and physical interactions and mechanisms take place at the ink-paper interface. Interactions between ink and paper are of interest to both the papermakers and ink producers, as they wish to achieve better quality in the final product. The objective of this work is to clarify the combined influence of paper coating structure, printing ink and fountain solution on ink setting and the problems related to ink setting. A further aim is to identify the mechanisms that influence ink setting problems, and to be able to counteract them by changing properties of the coating layer or by changing the properties of the ink. The work carried out for this thesis included use of many techniques ranging from standard paper and printability tests to advanced optical techniques for detection of ink filaments during ink levelling. Modern imaging methods were applied for assessment of ink filament remain sizes and distribution of ink components inside pigment coating layers. Gravimetric filtration method and assessment of print rub using Ink-Surface-Interaction-Tester (ISIT) were utilized to study the influence of ink properties on ink setting. The chemical interactions were observed with the help of modified thin layer chromatography and contact angle measurements using both conventional and high speed imaging. The results of the papers in this thesis link the press operational parameters to filament sizes and show the influence of these parameters to filament size distribution. The relative importance between the press operation parameters was shown to vary. The size distribution of filaments is important in predicting the ink setting behaviour, which was highlighted by the dynamic gloss and ink setting studies. Prediction of ink setting behaviour was also further improved by use of separate permeability factors for different ink types in connection to filtration equations. The roles of ink components were studied in connection to ink absorption and mechanism of print rub. Total solids content and ratio of linseed oil to mineral oil were found to determine the degree of print rub on coated papers. Wax addition improved print rub resistance, but would not decrease print rub as much as lowering the total solids content in the ink. Linseed oil was shown to absorb into pigment coating pores by mechanism of adsorption to pore walls, which highlights the need for sufficient pore surface area for improved chromatographic separation of ink components. These results should help press operators, suppliers of printing presses, papermakers and suppliers to papermakers, to better understand the material and operating conditions of the press as it relates to various print quality issues. Even though paper is in competition with electronic media, high quality printed products are still in demand. The results should provide useful information for this segment of the industry.
Resumo:
In many industrial applications, such as the printing and coatings industry, wetting of porous materials by liquids includes not only imbibition and permeation into the bulk but also surface spreading and evaporation. By understanding these phenomena, valuable information can be obtained for improved process control, runnability and printability, in which liquid penetration and subsequent drying play important quality and economic roles. Knowledge of the position of the wetting front and the distribution/degree of pore filling within the structure is crucial in describing the transport phenomena involved. Although exemplifying paper as a porous medium in this work, the generalisation to dynamic liquid transfer onto a surface, including permeation and imbibition into porous media, is of importance to many industrial and naturally occurring environmental processes. This thesis explains the phenomena in the field of heatset web offset printing but the content and the analyses are applicable in many other printing methods and also other technologies where water/moisture monitoring is crucial in order to have a stable process and achieve high quality end products. The use of near-infrared technology to study the water and moisture response of porous pigmented structures is presented. The use of sensitive surface chemical and structural analysis, as well as the internal structure investigation of a porous structure, to inspect liquid wetting and distribution, complements the information obtained by spectroscopic techniques. Strong emphasis has been put on the scale of measurement, to filter irrelevant information and to understand the relationship between interactions involved. The near-infrared spectroscopic technique, presented here, samples directly the changes in signal absorbance and its variation in the process at multiple locations in a print production line. The in-line non-contact measurements are facilitated by using several diffuse reflectance probes, giving the absolute water/moisture content from a defined position in the dynamic process in real-time. The nearinfrared measurement data illustrate the changes in moisture content as the paper is passing through the printing nips and dryer, respectively, and the analysis of the mechanisms involved highlight the roles of the contacting surfaces and the relative liquid carrier properties of both non-image and printed image areas. The thesis includes laboratory studies on wetting of porous media in the form of coated paper and compressed pigment tablets by mono-, dual-, and multi-component liquids, and paper water/moisture content analysis in both offline and online conditions, thus also enabling direct sampling of temporal water/moisture profiles from multiple locations. One main focus in this thesis was to establish a measurement system which is able to monitor rapid changes in moisture content of paper. The study suggests that near-infrared diffuse reflectance spectroscopy can be used as a moisture sensitive system and to provide accurate online qualitative indicators, but, also, when accurately calibrated, can provide quantification of water/moisture levels, its distribution and dynamic liquid transfer. Due to the high sensitivity, samples can be measured with excellent reproducibility and good signal to noise ratio. Another focus of this thesis was on the evolution of the moisture content, i.e. changes in moisture content referred to (re)wetting, and liquid distribution during printing of coated paper. The study confirmed different wetting phases together with the factors affecting each phase both for a single droplet and a liquid film applied on a porous substrate. For a single droplet, initial capillary driven imbibition is followed by equilibrium pore filling and liquid retreat by evaporation. In the case of a liquid film applied on paper, the controlling factors defining the transportation were concluded to be the applied liquid volume in relation to surface roughness, capillarity and permeability of the coating giving the liquid uptake capacity. The printing trials confirmed moisture gradients in the printed sheet depending on process parameters such as speed, fountain solution dosage and drying conditions as well as the printed layout itself. Uneven moisture distribution in the printed sheet was identified to be one of the sources for waving appearance and the magnitude of waving was influenced by the drying conditions.
Resumo:
Mass-produced paper electronics (large area organic printed electronics on paper-based substrates, “throw-away electronics”) has the potential to introduce the use of flexible electronic applications in everyday life. While paper manufacturing and printing have a long history, they were not developed with electronic applications in mind. Modifications to paper substrates and printing processes are required in order to obtain working electronic devices. This should be done while maintaining the high throughput of conventional printing techniques and the low cost and recyclability of paper. An understanding of the interactions between the functional materials, the printing process and the substrate are required for successful manufacturing of advanced devices on paper. Based on the understanding, a recyclable, multilayer-coated paper-based substrate that combines adequate barrier and printability properties for printed electronics and sensor applications was developed in this work. In this multilayer structure, a thin top-coating consisting of mineral pigments is coated on top of a dispersion-coated barrier layer. The top-coating provides well-controlled sorption properties through controlled thickness and porosity, thus enabling optimizing the printability of functional materials. The penetration of ink solvents and functional materials stops at the barrier layer, which not only improves the performance of the functional material but also eliminates potential fiber swelling and de-bonding that can occur when the solvents are allowed to penetrate into the base paper. The multi-layer coated paper under consideration in the current work consists of a pre-coating and a smoothing layer on which the barrier layer is deposited. Coated fine paper may also be used directly as basepaper, ensuring a smooth base for the barrier layer. The top layer is thin and smooth consisting of mineral pigments such as kaolin, precipitated calcium carbonate, silica or blends of these. All the materials in the coating structure have been chosen in order to maintain the recyclability and sustainability of the substrate. The substrate can be coated in steps, sequentially layer by layer, which requires detailed understanding and tuning of the wetting properties and topography of the barrier layer versus the surface tension of the top-coating. A cost competitive method for industrial scale production is the curtain coating technique allowing extremely thin top-coatings to be applied simultaneously with a closed and sealed barrier layer. The understanding of the interactions between functional materials formulated and applied on paper as inks, makes it possible to create a paper-based substrate that can be used to manufacture printed electronics-based devices and sensors on paper. The multitude of functional materials and their complex interactions make it challenging to draw general conclusions in this topic area. Inevitably, the results become partially specific to the device chosen and the materials needed in its manufacturing. Based on the results, it is clear that for inks based on dissolved or small size functional materials, a barrier layer is beneficial and ensures the functionality of the printed material in a device. The required active barrier life time depends on the solvents or analytes used and their volatility. High aspect ratio mineral pigments, which create tortuous pathways and physical barriers within the barrier layer limit the penetration of solvents used in functional inks. The surface pore volume and pore size can be optimized for a given printing process and ink through a choice of pigment type and coating layer thickness. However, when manufacturing multilayer functional devices, such as transistors, which consist of several printed layers, compromises have to be made. E.g., while a thick and porous top-coating is preferable for printing of source and drain electrodes with a silver particle ink, a thinner and less absorbing surface is required to form a functional semiconducting layer. With the multilayer coating structure concept developed in this work, it was possible to make the paper substrate suitable for printed functionality. The possibility of printing functional devices, such as transistors, sensors and pixels in a roll-to-roll process on paper is demonstrated which may enable introducing paper for use in disposable “onetime use” or “throwaway” electronics and sensors, such as lab-on-strip devices for various analyses, consumer packages equipped with product quality sensors or remote tracking devices.
Resumo:
Summary
Resumo:
Summary
Resumo:
Selostus: Alumiini- ja rautaoksidien fosforikyllästysasteen arvioiminen suomalaisista peltomaista
Resumo:
[Abstract]
Resumo:
Abstract
Resumo:
The objective of this thesis work was to assess axial misalignment in fatigue loaded welds using the effective notch method. As a result, the fatigue behaviour of non-load carrying cruciform fillet welded joint under cyclic tensile loading has been studied. Various degrees of axial misalignment have been found in one series of non-load carrying cruciform fillet welded joints used in a laboratory investigation. As a result, it was important to carry out a comprehensive investigation since axial misalignment forms part of thequality of fatigue loaded structure and can reduce the fatigue strength. To extend the study, the correlation between fatigue strength and stress ratio, as well as stress concentration factor, were also studied. Moreover, a closer investigation of place of crack initiation and its dependence on weld sequence and imperfections of test specimen (angular distortion) was studied. For the fatigue class calculations, FEM (finite element method) and the effectivenotch approach are used. The addressed variable is the axial misalignment whichis introduce by modeling the entire joint. Fracture mechanics based calculations are also used and quantitatively compared with effective notch and experimental results.
Resumo:
Nowadays the used fuel variety in power boilers is widening and new boiler constructions and running models have to be developed. This research and development is done in small pilot plants where more faster analyse about the boiler mass and heat balance is needed to be able to find and do the right decisions already during the test run. The barrier on determining boiler balance during test runs is the long process of chemical analyses of collected input and outputmatter samples. The present work is concentrating on finding a way to determinethe boiler balance without chemical analyses and optimise the test rig to get the best possible accuracy for heat and mass balance of the boiler. The purpose of this work was to create an automatic boiler balance calculation method for 4 MW CFB/BFB pilot boiler of Kvaerner Pulping Oy located in Messukylä in Tampere. The calculation was created in the data management computer of pilot plants automation system. The calculation is made in Microsoft Excel environment, which gives a good base and functions for handling large databases and calculations without any delicate programming. The automation system in pilot plant was reconstructed und updated by Metso Automation Oy during year 2001 and the new system MetsoDNA has good data management properties, which is necessary for big calculations as boiler balance calculation. Two possible methods for calculating boiler balance during test run were found. Either the fuel flow is determined, which is usedto calculate the boiler's mass balance, or the unburned carbon loss is estimated and the mass balance of the boiler is calculated on the basis of boiler's heat balance. Both of the methods have their own weaknesses, so they were constructed parallel in the calculation and the decision of the used method was left to user. User also needs to define the used fuels and some solid mass flowsthat aren't measured automatically by the automation system. With sensitivity analysis was found that the most essential values for accurate boiler balance determination are flue gas oxygen content, the boiler's measured heat output and lower heating value of the fuel. The theoretical part of this work concentrates in the error management of these measurements and analyses and on measurement accuracy and boiler balance calculation in theory. The empirical part of this work concentrates on the creation of the balance calculation for the boiler in issue and on describing the work environment.