13 resultados para peanut cultivars

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Uudet suomalaiset vadelmalajikkeet Jenkka ja Jatsi

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Perunalajikkeiden ponsiviljelyllä tuotettujen dihaploidien protoplastien sähköfuusio

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Timoteilajikkeiden sadot, kasvuominaisuudet sekä typpi- ja kuitupitoisuus kahdella leveysasteella

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kolmen uuden mesimarjalajikkeen kuvaukset ja lajikekuvausohjeet mesimarjalle ja jalomaaraimelle

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Suomessa viljeltävien perunalajikkeiden kestävyys A- ja Y-virusta vastaan

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Ruisvehnälajikkeiden Ulrika ja Moreno rehuarvo lihasikojen ruokinnassa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Suomalaisen kauran seleenipitoisuus vuosina 1997-1999

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Andean area of South America is a very important center for the domestication of food crops. This area is the botanical origin of potato, peanut and tomato. Less well- known crops, such as quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus), were also domesticated by ancient Andean farmers. These crops have a long history of safe use with the local populations and they have contributed to the nutrition and wellbeing of the people for centuries. Several studies have reported the nutritional value of Andean grains. They contain proteins with a balanced essential amino acid composition that are of high biological value, good quality oil and essential minerals, for example iron, calcium and zinc. They are potential sources of bioactive compounds such as polyphenols and dietary fiber. The main objective of the practical work was to assess the nutritional value of Andean native grains with a special emphasis on the bioactive components and the impact of processing. The compounds studied were phenolic acids, flavonoids, betalains and dietary fiber. The radical scavenging activity was measured as well. Iron, calcium and zinc content and their bioavailability were analyzed as well. The grains were processed by extrusion with the aim to study the effect of processing on the chemical composition. Quinoa, kañiwa and kiwicha are very good sources of dietary fiber, especially of insoluble dietary fiber. The phenolic acid content in Andean crops was low compared with common cereals like wheat and rye, but was similar to levels found in oat, barley, corn and rice. The flavonoid content of quinoa and kañiwa was exceptionally high. Kiwicha did not contain quantifiable amounts of these compounds. Only one variety of kiwicha contained low amounts of betalains. These compounds were not detected in kañiwa or quinoa. Quinoa, kañiwa and kiwicha are good sources of minerals. Their calcium, zinc and iron content are higher than the content of these minerals in common cereals. In general, roasting did not affect significantly mineral bioavailability. On the contrary, in cooked grains, there was an increase in bioavailability of zinc and, in the case of kañiwa, also in iron and calcium bioavailability. In all cases, the contents of total and insoluble dietary fiber decreased during the extrusion process. At the same time, the content of soluble dietary fiber increased. The content of total phenolics, phytic acid and the antioxidant activity decreased in kiwicha varieties during the extrusion process. In the case of quinoa, the content of total phenolic compounds and the radical scavenging activity increased during the extrusion process in all varieties. Taken together, the studies presented here demonstrate that the Andean indigenous crops have excellent potential as sources of minerals, flavonoids and dietary fiber. Further studies should be conducted to characterize the phenolic compound and antioxidant composition in processed grains and end products. Quinoa, kañiwa and kiwicha grains are consumed widely in Andean countries but they also have a significant, worldwide potential as a new cultivated crop species and as an imported commodity from South America. Their inclusion in the diet has the potential to improve the intake of minerals and health-promoting bioactive compounds. They may also be interesting raw materials for special dietary foods and functional foods offering natural sources of specific health-promoting components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hawthorn (Crataegus sp.) is widely distributed in the northern hemisphere (Asia, Europe and North America). It has been used as a medicinal material and food for hundreds of years both in Europe and in China. Clinical investigations and other research suggest that extracts of hawthorn fruits and leaves have multiple health effects including hypolipidaemic, anti-atherosclerotic, hypotensive, cardioprotective and blood vessel relaxing activities. Hawthorn fruit extracts have also displayed antioxidant and radical scavenging activities. Emblic leafflower fruit (Phyllanthus emblica) is widely used in Chinese and Indian traditional medicine. It has been found to have anti-cancer, hypoglycaemic and hypolipidaemic activities as well as cardioprotective effects and antioxidant activity. The fruit is currently used as a functional food targeted at obese people in China. Phenolic compounds, procyanidins (PCs), flavonols and C-glycosyl flavones in hawthorn and hydrolysable tannins in emblic leafflower fruits are considered among the major bioactive compounds in these berries. Moreover, hawthorn and emblic leafflower fruits are rich in vitamin C, triterpenoids, fruit acids, sugar alcohols and some other components with beneficial effects on the health of human beings. The aim of the thesis work was to characterise the major phenolic compounds in hawthorn fruits and leaves and emblic leafflower fruits as well as other components contributing to the nutritional profile and sensory properties of hawthorn fruits. Differences in the content and compositional profile of the major phenolic compounds, sugars, acids and sugar alcohols within various origins and species of hawthorn were also investigated. Acids, sugars and sugar alcohols in the fruits of different origins/cultivars belonging to three species (C. pinnatifida, C. brettschneideri and C. scabrifolia) of hawthorn were analysed by gas chromatography (GC-FID) and mass spectrometry (Publication I). Citric acid, quinic acid, malic acid, fructose, glucose, sorbitol and myo-inositol were found in all the subspecies. Sucrose was present only in C. scabrifolia and three cultivars of C. pinnatifida var. major. Forty-two phenolic compounds were identified/tentatively identified in fruits of C. pinnatifida var. major by polyamide column chromatography combined with high-performance liquid chromatograph-electrospray ionisation mass spectrometry (HPLC-ESI-MS) (Publication II). Ideain, chlorogenic acid, procyanidin (PC) B2, (-)-epicatechin, hyperoside and isoquercitrin were the major phenolic components identified. In addition, 35 phenolic compounds were tentatively identified based on UV and mass spectra. Eleven major phenolic compounds (hyperoside, isoquercitrin, chlorogenic acid, ideain, (-)-epicatechin, two PC dimers, three PC trimers and a PC dimer-hexoside) were quantified in the fruits of 22 cultivars/origins of three species of Chinese hawthorn by HPLC-ESI-MS with single ion recording function (SIR) (Publication III). The fruits of the hawthorn cultivars/origins investigated fell into two groups, one rich in sugars and flavonols, the other rich in acids and procyanidins. Based on the compositional features, different biological activities and sensory properties may be expected between cultivars/origins of the two groups. The results suggest that the contents of phenolic compounds, acids, sugars and sugar alcohols may be used as chemotaxonomic information distinguishing the hawthorn species from each other. Phenolic compounds in fruits and leaves of C. grayana and their changes during fruit ripening/harvesting were investigated using HPLC-UV-ESI-MS (Publication IV). (-)-Epicatechin, PC B2 and C1, hyperoside and a quercetin-pentoside were the major phenolic compounds in both fruits and leaves. Three C-glycosyl flavones (a luteolin-C-hexoside, a methyl luteolin-C-hexoside and an apigenin-C-hexoside) were present in leaves in abundance, but only at trace levels in fruits. Ideain and 5-O-caffeoylquinic acid were found in fruits only. Additionally, eleven phenolic compounds were identified/tentatively identified in both leaves and fruits (three B-type PC trimers, two B-type PC tetramers, a quercetin-rhamnosylhexoside, a quercetin-pentoside, a methoxykaempferol-methylpentosylhexoside, a quercetin-hexoside acetate, a methoxykaempferol-pentoside, chlorogenic acid and an unknown hydroxycinnamic acid derivative). The total content of phenolic compounds reached the highest level by the end of August in fruits and by the end of September in leaves. The compositional profiles of phenolic compounds in fruits and leaves of C. grayana were different from those of C. pinnatifida, C. brettschneideri, C. scabrifolia, C. pinnatifida. var. major, C. monogyna, C. laevigata and C. pentagyna. Phenolic compounds in emblic leafflower fruits were characterised by Sephadex LH-20 column chromatography combined with HPLC-ESI-MS (Publication V). A mucic acid gallate, three isomers of mucic acid lactone gallate, a galloylglucose, gallic acid, a digalloylglucose, putranjivain A, a galloyl-HHDP-glucose, elaeocarpusin and chebulagic acid represented the major phenolic compounds in fruits of emblic leafflower. In conclusion, results of this study significantly increase the current knowledge on the key bioactive and nutritional components of hawthorn and emblic leafflower fruits. These results provide important information for research on the mechanism responsible for the health benefits of these fruits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Fescues consist of wild and cultivated grasses that have adapted to a wide range of environmental conditions. They are an excellent model species for evolutionary ecology studies that investigate symbiosis and polyploidization and their effects on plant performance. First, they are frequently infected with symbiotic endophytic fungi known to affect a plant’s ability to cope with biotic and abiotic environmental factors. Second, fescue species have been reported to have substantial intraspecific variation in their ploidy level and morphology. In my thesis, I examined large-scale generalizations for frequency of polyploidy and endophyte infections and their effects on plant morphology. As a model species, I selected red (Festuca rubra) and viviparous sheep’s (F. vivipara) fescues. They are closely related, but they differ in terms of distribution and endophyte infection frequency. I investigated the biogeographic pattern and population biology of 29 red and 12 viviparous sheep’s fescue populations across ≈300 latitudes in Europe (400-690 N). To examine plant ploidy levels, I implemented time- and cost-efficient plate-based high throughput flow cytometric analysis. This efficient procedure enabled me to analyze over 1000 red fescue individuals. I found three ploidy levels among them: overall 84 %, 9 % and 7 % of the red fescue plants were hexaploid, tetraploid and octoploid, respectively. However, all viviparous sheep’s fescue plants were tetraploid. Ploidy level of red fescue appeared to some extent follow gradients in latitude and primary production as suggested by previous studies, but these results could be explained better by taking the sampling design and local adaptation into account. Three Spanish populations were mostly tetraploids and one high elevation population in northernmost Finland (Halti) was octoploid, while most other populations (25 sites) were dominated by hexaploids. Endophyte infection frequencies of wild fescue populations varied from 0 to 81 % in red fescue populations and from 0 to 30 % in viviparous sheep’s fescue populations. No gradients with latitude or primary production of the sites were detected. As taxonomy of red fescues is somewhat unclear, I also studied morphology, ploidy variation and endophyte status of proposed subspecies of European red fescues. Contrary to previous literature, different ploidy levels occurred in the same subspecies. In addition to wild fescues, I also used two agronomically important cultivars of meadow and tall fescue (Schedonorus phoenix and S. pratensis). As grass-legume mixtures have an agronomic advantage over monocultures in meadows, I carried out a mixture/competition experiment with fescues and red clover to find that species composition, nutrient availability and endophyte status together determined the total biomass yield that was higher in mixtures compared to monocultures. The results of this thesis demonstrate the importance of local biotic and abiotic factors such as grazing gradients and habitat types, rather than suggested general global geographical or environmental factors on grass polyploidization or its association with symbiotic endophytic fungi. I conclude that variation in endophyte infection frequencies and ploidy levels of wild fescues support the geographic mosaic theory of coevolution. Historical incidents, e.g., glaciation and present local factors, rather than ploidy or endophyte status, determine fescue morphology.