2 resultados para parallelization
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.
Resumo:
Numerical weather prediction and climate simulation have been among the computationally most demanding applications of high performance computing eversince they were started in the 1950's. Since the 1980's, the most powerful computers have featured an ever larger number of processors. By the early 2000's, this number is often several thousand. An operational weather model must use all these processors in a highly coordinated fashion. The critical resource in running such models is not computation, but the amount of necessary communication between the processors. The communication capacity of parallel computers often fallsfar short of their computational power. The articles in this thesis cover fourteen years of research into how to harness thousands of processors on a single weather forecast or climate simulation, so that the application can benefit as much as possible from the power of parallel high performance computers. The resultsattained in these articles have already been widely applied, so that currently most of the organizations that carry out global weather forecasting or climate simulation anywhere in the world use methods introduced in them. Some further studies extend parallelization opportunities into other parts of the weather forecasting environment, in particular to data assimilation of satellite observations.