29 resultados para linear machine modeling

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the SR-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the “basic pole pair” in linear-movement transversal-flux switchedreluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of price risk management concerning high grade steel alloys and their components was conducted. This study was focused in metal commodities, of which nickel, chrome and molybdenum were in a central role. Also possible hedging instruments and strategies for referred metals were studied. In the literature part main themes are price formation of Ni, Cr and Mo, the functioning of metal exchanges and main hedging instruments for metal commodities. This section also covers how micro and macro variables may affect metal prices from the viewpoint of short as well as longer time period. The experimental part consists of three sections. In the first part, multiple regression model with seven explanatory variables was constructed to describe price behavior of nickel. Results were compared after this with information created with comparable simple regression model. Additionally, long time mean price reversion of nickel was studied. In the second part, theoretical price of CF8M alloy was studied by using nickel, ferro-chrome and ferro-molybdenum as explanatory variables. In the last section, cross hedging possibilities for illiquid FeCr -metal was studied with five LME futures. Also this section covers new information concerning possible forthcoming molybdenum future contracts as well. The results of this study confirm, that linear regression models which are based on the assumption of market rationality, are not able to reliably describe price development of metals at issue. Models fulfilling assumptions for linear regression may though include useful information of statistical significant variables which have effect on metal prices. According to the experimental part, short futures were found to incorporate the most accurate information concerning the price movements in the future. However, not even 3M futures were able to predict turning point in the market before the faced slump. Cross hedging seemed to be very doubtful risk management strategy for illiquid metals, because correlations coefficients were found to be very sensitive for the chosen time span.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The estimation of losses plays a key role in the process of building any electrical machine. How to estimate those losses while designing any machine; by obtaining the characteristic of the electrical steel from the catalogue and calculate the losses. However, this way is inaccurate since the electrical steel performs several manufacturing processes during the process of building any machine, which affects directly the magnetic property of the electrical steel and accordingly the characteristic of the electrical steel will be affected. That means the B–H curve of the steel that was obtained from the catalogue will be changed. Moreover, during loading and rotating the machine, some important changes occur to the B–H characteristic of the electrical steel such as the stress on the laminated iron. Accordingly, the pre-estimated losses are completely far from the actual losses because they were estimated based on the data of the electrical steel obtained from the catalogue. So in order to estimate the losses precisely significant factors of the manufacturing processes must be included. The paper introduces the systematic estimation of the losses including the effect of one of the manufacturing factors. Similarly, any other manufacturing factor can be included in the pre-designed losses estimations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sähkökoneenterminen suunnittelu on yhtä tärkeätä kuin koneen sähköisten piirien ja magneettipiirin mitoitus, koska koneen lämpenemä määrää koneesta saatavan tehon. Pääosasähkökoneista suunnitellaan edelleen ns. perimätiedon avulla, jossa tukeudutaanvalmiiksi koeteltuihin ratkaisuihin ja kokemusperäiseen tietoon tiettyjen rakenteiden toimivuudesta. Perinteisin menetelmin uusia konerakenteita suunniteltaessa ei pystytä saamaan luotettavaa tietoa uusien ratkaisuiden toimivuudesta. Etenkin hitaasti pyörivien ja suuren vääntötiheyden omaavien kestomagneettitahtikoneiden jäähdytyksen mitoitus on ongelmallista. Siten tarve kehittää analyyttisiä työkaluja lämpenemän mallinnukseen on perusteltua. Tässä työssäperehdytään suuren tehotiheyden omaavien kestomagneettikoneiden urakoon ja virrantiheyden valintaan termisen mitoituksen kannalta. Työn tavoitteena on laatia yksinkertainen analyyttinen työkalu urakoon ja virrantiheyden valintaan. Työkaluavoidaan hyödyntää jo koneensuunnittelun alkuvaiheessa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usingof belt for high precision applications has become appropriate because of the rapid development in motor and drive technology as well as the implementation of timing belts in servo systems. Belt drive systems provide highspeed and acceleration, accurate and repeatable motion with high efficiency, long stroke lengths and low cost. Modeling of a linear belt-drive system and designing its position control are examined in this work. Friction phenomena and position dependent elasticity of the belt are analyzed. Computer simulated results show that the developed model is adequate. The PID control for accurate tracking control and accurate position control is designed and applied to the real test setup. Both the simulation and the experimental results demonstrate that the designed controller meets the specified performance specifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Työssä johdettiin sähköisen lineaariservomoottorijärjestelmän dynaaminen malli. Lineaarimoottori on keksintönä vanha, mutta vasta viimeaikoina kestomagneettimateriaalien kehittyessä ja halvetessa lineaarimoottorista on tullut varteenotettava vaihtoehto pyörivän moottorin ja lineaarisen liikkeen toteuttavan mekanismin yhdistelmälle. Kestomagnetoituja lineaarimoottoreita käytetään sovelluksissa, joissa tarvitaan tarkkaa paikoitusta ja nopeudella ja kiihtyvyydellä on suuret vaatimukset. Moottorimalli toteutettiin vuorovaikutteisena simulointimallina. Moottorimalli, josta saatiin moottorin voima, rakennettiin MatLabâ 6.0/Simulinkâ –ohjelmalle ja moottoriin kiinnitetyn mekaniikan malli ADAMS 10.0 –ohjelmalle. Mallit on liitetty tämän jälkeen vuorovaikutteiseksi simulointimalliksi. Simuloinnista saatuja tuloksia on verrattu koneautomaation laboratorioon hankitun lineaarimoottorijärjestelmän mitattuihin vasteisiin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main subject of this master's thesis was predicting diffusion of innovations. The prediction was done in a special case: product has been available in some countries, and based on its diffusion in those countries the prediction is done for other countries. The prediction was based on finding similar countries with Self-Organizing Map~(SOM), using parameters of countries. Parameters included various economical and social key figures. SOM was optimised for different products using two different methods: (a) by adding diffusion information of products to the country parameters, and (b) by weighting the country parameters based on their importance for the diffusion of different products. A novel method using Differential Evolution (DE) was developed to solve the latter, highly non-linear optimisation problem. Results were fairly good. The prediction method seems to be on a solid theoretical foundation. The results based on country data were good. Instead, optimisation for different products did not generally offer clear benefit, but in some cases the improvement was clearly noticeable. The weights found for the parameters of the countries with the developed SOM optimisation method were interesting, and most of them could be explained by properties of the products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Työn tavoitteena oli toteuttaa simulointimalli, jolla pystytään tutkimaan kestomagnetoidun tahtikoneen aiheuttaman vääntömomenttivärähtelyn vaikutuksia sähkömoottoriin liitetyssä mekaniikassa. Tarkoitus oli lisäksi selvittää kuinka kyseinen simulointimalli voidaan toteuttaa nykyaikaisia simulointiohjelmia käyttäen. Saatujen simulointitulosten oikeellisuus varmistettiin tätä työtä varten rakennetulla verifiointilaitteistolla. Tutkittava rakenne koostui akselista, johon kiinnitettiin epäkeskotanko. Epäkeskotankoon kiinnitettiin massa, jonka sijaintia voitiin muunnella. Massan asemaa muuttamalla saatiin rakenteelle erilaisia ominaistaajuuksia. Epäkeskotanko mallinnettiin joustavana elementtimenetelmää apuna käyttäen. Mekaniikka mallinnettiin dynamiikan simulointiin tarkoitetussa ADAMS –ohjelmistossa, johon joustavana mallinnettu epäkeskotanko tuotiin ANSYS –elementtimenetelmäohjelmasta. Mekaniikan malli siirrettiin SIMULINK –ohjelmistoon, jossa mallinnettiin myös sähkökäyttö. SIMULINK –ohjelmassa mallinnettiin sähkökäyttö, joka kuvaa kestomagnetoitua tahtikonetta. Kestomagnetoidun tahtikoneen yhtälöt perustuvat lineaarisiin differentiaaliyhtälöihin, joihin hammasvääntömomentin vaikutus on lisätty häiriösignaalina. Sähkökäytön malli tuottaa vääntömomenttia, joka syötetään ADAMS –ohjelmistolla mallinnettuun mekaniikkaan. Mekaniikan mallista otetaan roottorin kulmakiihtyvyyden arvo takaisinkytkentänä sähkömoottorin malliin. Näin saadaan aikaiseksi yhdistetty simulointi, joka koostuu sähkötoimilaitekäytöstä ja mekaniikasta. Tulosten perusteella voidaan todeta, että sähkökäyttöjen ja mekaniikan yhdistetty simulointi on mahdollista toteuttaa valituilla menetelmillä. Simuloimalla saadut tulokset vastaavat hyvin mitattuja tuloksia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the analysis of high-speed solid-rotor induction motors in presented. The analysis is based on a new combination of the three dimensional linear method and the transfer matrix method. Both saturation and finite length effects are taken into account. The active region of the solid rotor is divided into saturated and unsaturated parts. The time dependence is assumed to be sinusoidal and phasor quantities are used in the solution. The method is applied to the calculation of smooth solid rotors manufactured of different materials. Six rotor materials are tested: three construction steels, pure iron, a cobaltiron alloy and an aluminium alloy. The results obtained by the method agree fairly well with the measurement quantities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper machine, it is not a desired feature for the boundary layer flows in the fabric and the roll surfaces to travel into the closing nips, creating overpressure. In this thesis, the aerodynamic behavior of the grooved roll and smooth rolls is compared in order to understand the nip flow phenomena, which is the main reason why vacuum and grooved roll constructions are designed. A common method to remove the boundary layer flow from the closing nip is to use the vacuum roll construction. The downside of the use of vacuum rolls is high operational costs due to pressure losses in the vacuum roll shell. The deep grooved roll has the same goal, to create a pressure difference over the paper web and keep the paper attached to the roll or fabric surface in the drying pocket of the paper machine. A literature review revealed that the aerodynamic functionality of the grooved roll is not very well known. In this thesis, the aerodynamic functionality of the grooved roll in interaction with a permeable or impermeable wall is studied by varying the groove properties. Computational fluid dynamics simulations are utilized as the research tool. The simulations have been performed with commercial fluid dynamics software, ANSYS Fluent. Simulation results made with 3- and 2-dimensional fluid dynamics models are compared to laboratory scale measurements. The measurements have been made with a grooved roll simulator designed for the research. The variables in the comparison are the paper or fabric wrap angle, surface velocities, groove geometry and wall permeability. Present-day computational and modeling resources limit grooved roll fluid dynamics simulations in the paper machine scale. Based on the analysis of the aerodynamic functionality of the grooved roll, a grooved roll simulation tool is proposed. The smooth roll simulations show that the closing nip pressure does not depend on the length of boundary layer development. The surface velocity increase affects the pressure distribution in the closing and opening nips. The 3D grooved roll model reveals the aerodynamic functionality of the grooved roll. With the optimal groove size it is possible to avoid closing nip overpressure and keep the web attached to the fabric surface in the area of the wrap angle. The groove flow friction and minor losses play a different role when the wrap angle is changed. The proposed 2D grooved roll simulation tool is able to replicate the grooved aerodynamic behavior with reasonable accuracy. A small wrap angle predicts the pressure distribution correctly with the chosen approach for calculating the groove friction losses. With a large wrap angle, the groove friction loss shows too large pressure gradients, and the way of calculating the air flow friction losses in the groove has to be reconsidered. The aerodynamic functionality of the grooved roll is based on minor and viscous losses in the closing and opening nips as well as in the grooves. The proposed 2D grooved roll model is a simplification in order to reduce computational and modeling efforts. The simulation tool makes it possible to simulate complex paper machine constructions in the paper machine scale. In order to use the grooved roll as a replacement for the vacuum roll, the grooved roll properties have to be considered on the basis of the web handling application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.