67 resultados para laser, fibre, ottiche, moduli, connettori, lenti

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cutting of thick section stainless steel and mild steel, and medium section aluminium using the high power ytterbium fibre laser has been experimentally investigated in this study. Theoretical models of the laser power requirement for cutting of a metal workpiece and the melt removal rate were also developed. The calculated laser power requirement was correlated to the laser power used for the cutting of 10 mm stainless steel workpiece and 15 mm mild steel workpiece using the ytterbium fibre laser and the CO2 laser. Nitrogen assist gas was used for cutting of stainless steel and oxygen was used for mild steel cutting. It was found that the incident laser power required for cutting at a given cutting speed was lower for fibre laser cutting than for CO2 laser cutting indicating a higher absorptivity of the fibre laser beam by the workpiece and higher melting efficiency for the fibre laser beam than for the CO2 laser beam. The difficulty in achieving an efficient melt removal during high speed cutting of the 15 mmmild steel workpiece with oxygen assist gas using the ytterbium fibre laser can be attributed to the high melting efficiency of the ytterbium fibre laser. The calculated melt flow velocity and melt film thickness correlated well with the location of the boundary layer separation point on the 10 mm stainless steel cut edges. An increase in the melt film thickness caused by deceleration of the melt particles in the boundary layer by the viscous shear forces results in the flow separation. The melt flow velocity increases with an increase in assist gas pressure and cut kerf width resulting in a reduction in the melt film thickness and the boundary layer separation point moves closer to the bottom cut edge. The cut edge quality was examined by visual inspection of the cut samples and measurement of the cut kerf width, boundary layer separation point, cut edge squareness (perpendicularity) deviation, and cut edge surface roughness as output quality factors. Different regions of cut edge quality in 10 mm stainless steel and 4 mm aluminium workpieces were defined for different combinations of cutting speed and laserpower.Optimization of processing parameters for a high cut edge quality in 10 mmstainless steel was demonstrated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is to reveal how the laser cutting parameters influence lasercutting of particleboard, HDF and MDF. The literature review introduces the basic principle of CO2 laser, CO2 laser equipment and its usage in cutting of wood-based materials. The experimental part focuses on the discussion and analysis ofthe test data and attempts to draw conclusions on the influence of various parameters, including laser power, focal length of the lens and cutting gas, on the cutting speed and kerf quality. The tested materials include various thicknesses of particleboard, HDF and MDF samples. A TRUMPF TLF2700 HQ laser equipment was used for the experiments. To obtain valid data, the test samples must be completely cut through without any bonding of wood fibre. The maximum cutting speed is linear dependent on the laser power in thecondition that the other parameters are constant. For each thickness of a specific material type, there is a minimum laser power for cutting. Normally, the topand bottom kerf widths increase with the enhancement of laser power. There may be a critical laser power which can generate the minimum cross-sectional kerf width. Lens of larger focal length may achieve higher cutting speed. As the focal length becomes larger, the top kerf width tends to increase while the bottom andcross-sectional kerf widths to the opposite. Of all cutting gases, oxygen can help achieve higher cutting speed. The gas pressure of nitrogen does not seem to have strong influence on the cutting result. Generally, 2 bar air is more preferable for higher cutting speed. For particleboard and MDF samples of larger thickness than 12 mm, 2 bar argon can be used to reach remarkably higher cutting speed than the 5 bar. Generally, the 190.5 mm lens can produce smallest total kerf width. The kerf sides of thicker samples are darker than the thinner ones. The sample darkness tends to be lower as laser power increased. 63.5 mm lens seemed tocause more darkness than other lens. 5 bar cutting gases can produce less dark side kerfs than 2 bar ones. Oxygen normally causes darker kerfs than other gases. No distinct differences were found between nitrogen and argon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is done as a part of project called FuncMama that is a project between Technical Research Centre of Finland (VTT), Oulu University (OY), Lappeenranta University of Technology (LUT) and Finnish industrial partners. Main goal of the project is to manufacture electric and mechanical components from mixed materials using laser sintering. Aim of this study was to create laser sintered pieces from ceramic material and monitor the sintering event by using spectrometer. Spectrometer is a device which is capable to record intensity of different wavelengths in relation with time. In this study the monitoring of laser sintering was captured with the equipment which consists of Ocean Optics spectrometer, optical fiber and optical lens (detector head). Light from the sintering process hit first to the lens system which guides the light in to the optical fibre. Optical fibre transmits the light from the sintering process to the spectrometer where wavelengths intensity level information is detected. The optical lens of the spectrometer was rigidly set and did not move along with the laser beam. Data which was collected with spectrometer from the laser sintering process was converted with Excel spreadsheet program for result’s evaluation. Laser equipment used was IPG Photonics pulse fibre laser. Laser parameters were kept mainly constant during experimental part and only sintering speed was changed. That way it was possible to find differences in the monitoring results without fear of too many parameters mixing together and affecting to the conclusions. Parts which were sintered had one layer and size of 5 x 5 mm. Material was CT2000 – tape manufactured by Heraeus which was later on post processed to powder. Monitoring of different sintering speeds was tested by using CT2000 reference powder. Moreover tests how different materials effect to the process monitoring were done by adding foreign powder Du Pont 951 which had suffered in re-grinding and which was more reactive than CT2000. By adding foreign material it simulates situation where two materials are accidently mixed together and it was studied if that can be seen with the spectrometer. It was concluded in this study that with the spectrometer it is possible to detect changes between different laser sintering speeds. When the sintering speed is lowered the intensity level of light is higher from the process. This is a result of higher temperature at the sintering spot and that can be noticed with the spectrometer. That indicates it could be possible to use spectrometer as a tool for process observation and support the idea of having system that can help setting up the process parameter window. Also important conclusion was how well the adding of foreign material could be seen with the spectrometer. When second material was added a significant intensity level raise could be noticed in that part where foreign material was mixed. That indicates it is possible to see if there are any variations in the material or if there are more materials mixed together. Spectrometric monitoring of laser sintering could be useful tool for process window observation and temperature controlling of the sintering process. For example if the process window for specific material is experimentally determined to get wanted properties and satisfying sintering speed. It is possible if the data is constantly recorded that the results can show faults in the part texture between layers. Changes between the monitoring data and the experimentally determined values can then indicate changes in the material being generated by material faults or by wrong process parameters. The results of this study show that spectrometer could be one possible tool for monitoring. But to get in that point where this all can be made possible much more researching is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Lihassolutyypin ja lihassolun poikkipinta-alan yhteys sian kasvuun ja ruhon koostumukseen maatiaisessa ja yorkshiressa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Ohrarehu ja tärkkelysrankki kasvavien lihanautojen säilörehuun perustuvassa ruokinnassa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Timoteilajikkeiden sadot, kasvuominaisuudet sekä typpi- ja kuitupitoisuus kahdella leveysasteella

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Pellavan ja kuituhampun korren jakeiden tasapainokosteus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus : Öljypellavagenotyyppien niinikuitupitoisuus, kuitusato ja kuidun laatu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstruction of defects in the craniomaxillofacial (CMF) area has mainly been based on bone grafts or metallic fixing plates and screws. Particularly in the case of large calvarial and/or craniofacial defects caused by trauma, tumours or congenital malformations, there is a need for reliable reconstruction biomaterials, because bone grafts or metallic fixing systems do not completely fulfill the criteria for the best possible reconstruction methods in these complicated cases. In this series of studies, the usability of fibre-reinforced composite (FRC) was studied as a biostable, nonmetallic alternative material for reconstructing artificially created bone defects in frontal and calvarial areas of rabbits. The experimental part of this work describes the different stages of the product development process from the first in vitro tests with resin-impregnated fibrereinforced composites to the in vivo animal studies, in which this FRC was tested as an implant material for reconstructing different size bone defects in rabbit frontal and calvarial areas. In the first in vitro study, the FRC was polymerised in contact with bone or blood in the laboratory. The polymerised FRC samples were then incubated in water, which was analysed for residual monomer content by using high performance liquid chromatography (HPLC). It was found that this in vitro polymerisation in contact with bone and blood did not markedly increase the residual monomer leaching from the FRC. In the second in vitro study, different adhesive systems were tested in fixing the implant to bone surface. This was done to find an alternative implant fixing system to screws and pins. On the basis of this study, it was found that the surface of the calvarial bone needed both mechanical and chemical treatments before the resinimpregnated FRC could be properly fixed onto it. In three animal studies performed with rabbit frontal bone defects and critical size calvarial bone defect models, biological responses to the FRC implants were evaluated. On the basis of theseevaluations, it can be concluded that the FRC, based on E-glass (electrical glass) fibres forming a porous fibre veil enables the ingrowth of connective tissues to the inner structures of the material, as well as the bone formation and mineralization inside the fibre veil. Bone formation could be enhanced by using bioactive glass granules fixed to the FRC implants. FRC-implanted bone defects healed partly; no total healing of defects was achieved. Biological responses during the follow-up time, at a maximum of 12 weeks, to resin-impregnated composite implant seemed to depend on the polymerization time of the resin matrix of the FRC. Both of the studied resin systems used in the FRC were photopolymerised and the heat-induced postpolymerisation was used additionally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perinteisten kaarihitsausmenetelmien suhteellisen suuri lämmöntuonti aiheuttaa huomattavia muodonmuutoksia laivan rungon valmistusprosessin alkuvaiheessa. Muodonmuutosten seurauksena rakenteiden mitta- ja muototarkkuus heikkenee, mikä lisää oikaisu- ja sovitustyötä myöhemmissä työvaiheissa. Hitsausmuodonmuutoksia voidaan vähentää siirtymällä käyttämään laser-MAG-hybridihitsausta, jossa lämmöntuonti on merkittävästi pienempi kuin kaarihitsauksessa. Näin kyetään oleellisesti leikkaamaan oikaisu- ja sovitustyöstä syntyviä kustannuksia. Tämän diplomityön tavoitteena oli kehittää tuotantovalmiiksi kuitulaser- ja MAG-hitsauksen yhdistelmäprosessi Aker Yards Oy:n Turun telakalla loppuvuoden 2006 aikana. Hitsauslaitteiston asennus oli valmistunut kesäkuussa 2006, minkä jälkeen aloitettiin luokituslaitoksen hyväksymän koeohjelman hitsaukset. Käyttöönotto suunnitelmaan sisältyvä koehitsausohjelma oli laadittu Det Norske Veritaksen julkaisemaa ohjetta (Guidelines no. 19) mukaillen. Ensimmäiseksi määritettiin hitsauskokeiden avulla prosessille laadun ja tehokkuuden suhteen optimaalinen railogeometria. Seuraavaksi optimoitiin prosessin hitsausparametrit 6 mm:n aineenpaksuudelle hyödyntäen Taguchi-koesuunnittelumenetelmää. Tämän jälkeen optimiparametreilla hitsattiin koekappale väsytyskokeisiin, jotka suoritettiin Teknillisen korkeakoulun laivalaboratoriossa. Väsytyskoetulokset täyttivät luokituslaitoksen vaatimukset. Myös hitsauksen menetelmäkoe suoritettiin hyväksytetysti. Viimeinen koeohjelman mukainen hitsauskoesarja tehtiin prosessiparametrien sallittujen vaihtelurajojen määrittämiseksi. Diplomityön tavoite täyttyi joulukuussa 2006, jolloin 'laivan kansipaneeli hitsattiin ensimmäistä kertaa uudella hitsausprosessilla. Hitsauksen laatu korreloi hyvin menetelmäkokeen tulosten kanssa ¿ hitsit olivat tasalaatuisia ja ne täyttivät B-luokan vaatimukset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High reflectivity and high thermal conductivity, high vapour pressure of alloyingelements as well as low liquid surface tension and low ionisation potential, make laser welding of aluminium and its alloys a demanding task.Problems that occur during welding are mainly process instabilities of the keyhole and the melt pool, increased plasma formation above the melt pool and loss of alloying elements. These problems lead to unwanted metallurgical defects like hot cracks and porosity in the weld bead andother problems concerning the shape and appearance of the weld bead. In order to minimise the defects and improve the weld quality, the process and beam parameters need to be carefully adjusted along with a consideration concerning the use of filler wire for the welding process. In this work the welding of 3,0 mm thick grade 5083 aluminium alloy plates using a 3,0 kW Nd:YAG laser with grade 5183 filler wire addition is investigated. The plates were welded as butt joints with air gap sizes 0,5 mm, 0,7mm and 1,0 mm. The analysis of the weld beads obtained from the weldedsamples showed that the least imperfections were produced with 0,7 mm air gaps at moderate welding speeds. The analysis also covered the calculation of the melting efficiency and the study of the shape of the weld bead. The melting efficiency was on average around 20 % for the melting process of the welded plates. The weld beads showed the characteristic V-shape of a laser weld and retained this shape during the whole series of experiments.