2 resultados para isopentenyl transferase
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.
Resumo:
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterized by maternal pruritus and elevated liver enzymes. It usually begins in the third trimester of pregnancy and resolves spontaneously after delivery. ICP is considered benign for the pregnant woman, but it is associated with an increased risk for unexplained term stillbirth and preterm delivery. There are no specific laboratory markers to diagnose ICP. The diagnosis is currently based on the presence of maternal pruritus and elevated values of alanine aminotransaminases (ALT) and serum bile acids (BA). Recently, ursodeoxycholic acid (UDCA) has been used for treatment. Mechanisms leading to intrauterine fetal death (IUFD) may be multifactorial and are unknown at present. For this thesis, 415 pregnant women with ICP were studied. The aim was to evaluate the value of the liver enzyme glutathione S-transferase alpha (GSTA) as a specific marker of ICP and to assess the effect of maternal UDCA therapy on maternal laboratory values and fetal outcome. The specific markers predisposing the fetus to heart arrhythmia were studied by comparing waveform analysis of fetal electrocardiograms (FECG) during labor in pregnancies complicated by ICP with controls. The levels of maternal GSTA were high and the values correlated with the value of ALT in patients with ICP. UDCA therapy reduced the values of the liver enzymes and alleviated maternal pruritus, but it did not influence maternal hormonal values. Although the newborns experienced an uneventful perinatal outcome, severe ICP was still associated with preterm birth and admission to the neonatal intensive care unit (NICU). There were no significant differences in intrapartum FECG findings between fetuses born to ICP women and controls.