16 resultados para iron-reducing phenolic compounds
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis focuses on flavonoids, a subgroup of phenolic compounds produced by plants, and how they affect the herbivorous larvae of lepidopterans and sawflies. The first part of the literature review examines different techniques to analyze the chemical structures of flavonoids and their concentrations in biological samples. These techniques include, for example, ultraviolet-visible spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The second part of the literature review studies how phenolic compounds function in the metabolism of larvae. The harmful oxidation reactions of phenolic compounds in insect guts are also emphasized. In addition to the negative effects, many insect species have evolved the use of phenolic compounds for their own benefit. In the experimental part of the thesis, high concentrations of complex flavonoid oligoglycosides were found in the hemolymph (the circulatory fluid of insects) of birch and pine sawflies. The larvae produced these compounds from simple flavonoid precursors present in the birch leaves and pine needles. Flavonoid glycosides were also found in the cocoon walls of sawflies, which suggested that flavonoids were used in the construction of cocoons. The second part of the experimental work studied the modifications of phenolic compounds in conditions that mimicked the alkaline guts of lepidopteran larvae. It was found that the 24 plant species studied and their individual phenolic compounds had variable capacities to function as oxidative defenses in alkaline conditions. The excrements of lepidopteran and sawfly species were studied to see how different types of phenolics were processed by the larvae. These results suggested that phenolic compounds were oxidized, hydrolyzed, or modified in other ways during their passage through the digestive tract of the larvae.
Resumo:
The Andean area of South America is a very important center for the domestication of food crops. This area is the botanical origin of potato, peanut and tomato. Less well- known crops, such as quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus), were also domesticated by ancient Andean farmers. These crops have a long history of safe use with the local populations and they have contributed to the nutrition and wellbeing of the people for centuries. Several studies have reported the nutritional value of Andean grains. They contain proteins with a balanced essential amino acid composition that are of high biological value, good quality oil and essential minerals, for example iron, calcium and zinc. They are potential sources of bioactive compounds such as polyphenols and dietary fiber. The main objective of the practical work was to assess the nutritional value of Andean native grains with a special emphasis on the bioactive components and the impact of processing. The compounds studied were phenolic acids, flavonoids, betalains and dietary fiber. The radical scavenging activity was measured as well. Iron, calcium and zinc content and their bioavailability were analyzed as well. The grains were processed by extrusion with the aim to study the effect of processing on the chemical composition. Quinoa, kañiwa and kiwicha are very good sources of dietary fiber, especially of insoluble dietary fiber. The phenolic acid content in Andean crops was low compared with common cereals like wheat and rye, but was similar to levels found in oat, barley, corn and rice. The flavonoid content of quinoa and kañiwa was exceptionally high. Kiwicha did not contain quantifiable amounts of these compounds. Only one variety of kiwicha contained low amounts of betalains. These compounds were not detected in kañiwa or quinoa. Quinoa, kañiwa and kiwicha are good sources of minerals. Their calcium, zinc and iron content are higher than the content of these minerals in common cereals. In general, roasting did not affect significantly mineral bioavailability. On the contrary, in cooked grains, there was an increase in bioavailability of zinc and, in the case of kañiwa, also in iron and calcium bioavailability. In all cases, the contents of total and insoluble dietary fiber decreased during the extrusion process. At the same time, the content of soluble dietary fiber increased. The content of total phenolics, phytic acid and the antioxidant activity decreased in kiwicha varieties during the extrusion process. In the case of quinoa, the content of total phenolic compounds and the radical scavenging activity increased during the extrusion process in all varieties. Taken together, the studies presented here demonstrate that the Andean indigenous crops have excellent potential as sources of minerals, flavonoids and dietary fiber. Further studies should be conducted to characterize the phenolic compound and antioxidant composition in processed grains and end products. Quinoa, kañiwa and kiwicha grains are consumed widely in Andean countries but they also have a significant, worldwide potential as a new cultivated crop species and as an imported commodity from South America. Their inclusion in the diet has the potential to improve the intake of minerals and health-promoting bioactive compounds. They may also be interesting raw materials for special dietary foods and functional foods offering natural sources of specific health-promoting components.
Resumo:
Astringency is traditionally thought to be induced by plant tannins in foods. Because of this current research concerning the mechanism of astringency is focused on tannin‐protein interactions and thus on precipitation, which may be perceived by mechanoreceptors. However, astringency is elicited by a wide range of different phenolic compounds, as well as, some non‐phenolic compounds in various foods. Many ellagitannins or smaller compounds that contribute to astringent properties do not interact with salivary proteins and may be directly perceived through some receptors. Generally, the higher degree of polymerization of proanthocyanidins can be associated with more intense astringency. However, the astringent properties of smaller phenolic compounds may not be directly predicted from the structure of a compound, although glycosylation has a significant role. The astringency of organic acids may be directly linked to the perception of sourness, and this increases along with decreasing pH. Astringency can be divided into different sub‐qualities, including even other qualities than traditional mouth‐drying, puckering or roughing sensations. Astringency is often accompanied by bitter or sour or both taste properties. The different sub‐qualities can be influenced by different astringent compounds. In general, the glycolysation of the phenolic compound results in more velvety and smooth mouthdrying astringency. Flavonol glycosides and other flavonoid compounds and ellagitannins contribute to this velvety mouthdrying astringency. Additionally, they often lack the bitter properties. Proanthocyanidins and phenolic acids elicit more puckering and roughing astringency with some additional bitter properties. Quercetin 3‐O‐rutinoside, along with other quercetin glycosides, is among the key astringent compounds in black tea and red currants. In foods, there are always various other additional attributes that are perceived at the same with astringency. Astringent compounds themselves may have other sensory characteristics, such as bitter or sour properties, or they may enhance or suppress other sensory properties. Components contributing to these other properties, such as sugars, may also have similar effects on astringent sensations. Food components eliciting sweetness or fattiness or some polymeric polysaccharides can be used to mask astringent subqualities. Astringency can generally be referred to as a negative contributor to the liking of various foods. On the other hand, perceptions of astringent properties can vary among individuals. Many genetic factors that influence perceptions of taste properties, such as variations in perceiving a bitter taste or variations in saliva, may also effect the perception of astringency. Individuals who are more sensitive to different sensations may notice the differences between astringent properties more clearly. This may not have effects on the overall perception of astringency. However, in many cases, the liking of astringent foods may need to be learned by repetitive exposure. Astringency is often among the key sensory properties forming the unique overall flavour of certain foods, and therefore it also influences whether or not a food is liked. In many cases, astringency may be an important sub‐property suppressed by other more abundant sensory properties, but it may still have a significant contribution to the overall flavour and thus consumer preferences. The results of the practical work of this thesis show that the astringent phenolic compounds are mostly located in the skin fractions of black currants, crowberries and bilberries (publications I–III). The skin fractions themselves are rather tasteless. However, the astringent phenolic compounds can be efficiently removed from these skin fractions by consecutive ethanol extractions. Berries contain a wide range of different flavonol glycosides, hydroxycinnamic acid derivatives and anthocyanins and some of them strongly contribute to the different astringent and bitterness properties. Sweetness and sourness are located in the juice fractions along with the majority of sugars and fruit acids. The sweet and sour properties of the juice may be used to mask the astringent and bitterness properties of the extracts. Enzymatic treatments increase the astringent properties and fermented flavour of the black currant juice and decrease sweetness and freshness due to the effects on chemical compositions (IV). Sourness and sweetness are positive contributors to the liking of crowberry and bilberry fractions, whereas bitterness is more negative (V). Some astringent properties in berries are clearly negative factors, whereas some may be more positive. The liking of berries is strongly influenced by various consumer background factors, such as motives and health concerns. The liking of berries and berry fractions may also be affected by genetic factors, such as variations in the gene hTAS2R38, which codes bitter taste receptors (V).
Resumo:
The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).
Resumo:
Hawthorn (Crataegus sp.) is widely distributed in the northern hemisphere (Asia, Europe and North America). It has been used as a medicinal material and food for hundreds of years both in Europe and in China. Clinical investigations and other research suggest that extracts of hawthorn fruits and leaves have multiple health effects including hypolipidaemic, anti-atherosclerotic, hypotensive, cardioprotective and blood vessel relaxing activities. Hawthorn fruit extracts have also displayed antioxidant and radical scavenging activities. Emblic leafflower fruit (Phyllanthus emblica) is widely used in Chinese and Indian traditional medicine. It has been found to have anti-cancer, hypoglycaemic and hypolipidaemic activities as well as cardioprotective effects and antioxidant activity. The fruit is currently used as a functional food targeted at obese people in China. Phenolic compounds, procyanidins (PCs), flavonols and C-glycosyl flavones in hawthorn and hydrolysable tannins in emblic leafflower fruits are considered among the major bioactive compounds in these berries. Moreover, hawthorn and emblic leafflower fruits are rich in vitamin C, triterpenoids, fruit acids, sugar alcohols and some other components with beneficial effects on the health of human beings. The aim of the thesis work was to characterise the major phenolic compounds in hawthorn fruits and leaves and emblic leafflower fruits as well as other components contributing to the nutritional profile and sensory properties of hawthorn fruits. Differences in the content and compositional profile of the major phenolic compounds, sugars, acids and sugar alcohols within various origins and species of hawthorn were also investigated. Acids, sugars and sugar alcohols in the fruits of different origins/cultivars belonging to three species (C. pinnatifida, C. brettschneideri and C. scabrifolia) of hawthorn were analysed by gas chromatography (GC-FID) and mass spectrometry (Publication I). Citric acid, quinic acid, malic acid, fructose, glucose, sorbitol and myo-inositol were found in all the subspecies. Sucrose was present only in C. scabrifolia and three cultivars of C. pinnatifida var. major. Forty-two phenolic compounds were identified/tentatively identified in fruits of C. pinnatifida var. major by polyamide column chromatography combined with high-performance liquid chromatograph-electrospray ionisation mass spectrometry (HPLC-ESI-MS) (Publication II). Ideain, chlorogenic acid, procyanidin (PC) B2, (-)-epicatechin, hyperoside and isoquercitrin were the major phenolic components identified. In addition, 35 phenolic compounds were tentatively identified based on UV and mass spectra. Eleven major phenolic compounds (hyperoside, isoquercitrin, chlorogenic acid, ideain, (-)-epicatechin, two PC dimers, three PC trimers and a PC dimer-hexoside) were quantified in the fruits of 22 cultivars/origins of three species of Chinese hawthorn by HPLC-ESI-MS with single ion recording function (SIR) (Publication III). The fruits of the hawthorn cultivars/origins investigated fell into two groups, one rich in sugars and flavonols, the other rich in acids and procyanidins. Based on the compositional features, different biological activities and sensory properties may be expected between cultivars/origins of the two groups. The results suggest that the contents of phenolic compounds, acids, sugars and sugar alcohols may be used as chemotaxonomic information distinguishing the hawthorn species from each other. Phenolic compounds in fruits and leaves of C. grayana and their changes during fruit ripening/harvesting were investigated using HPLC-UV-ESI-MS (Publication IV). (-)-Epicatechin, PC B2 and C1, hyperoside and a quercetin-pentoside were the major phenolic compounds in both fruits and leaves. Three C-glycosyl flavones (a luteolin-C-hexoside, a methyl luteolin-C-hexoside and an apigenin-C-hexoside) were present in leaves in abundance, but only at trace levels in fruits. Ideain and 5-O-caffeoylquinic acid were found in fruits only. Additionally, eleven phenolic compounds were identified/tentatively identified in both leaves and fruits (three B-type PC trimers, two B-type PC tetramers, a quercetin-rhamnosylhexoside, a quercetin-pentoside, a methoxykaempferol-methylpentosylhexoside, a quercetin-hexoside acetate, a methoxykaempferol-pentoside, chlorogenic acid and an unknown hydroxycinnamic acid derivative). The total content of phenolic compounds reached the highest level by the end of August in fruits and by the end of September in leaves. The compositional profiles of phenolic compounds in fruits and leaves of C. grayana were different from those of C. pinnatifida, C. brettschneideri, C. scabrifolia, C. pinnatifida. var. major, C. monogyna, C. laevigata and C. pentagyna. Phenolic compounds in emblic leafflower fruits were characterised by Sephadex LH-20 column chromatography combined with HPLC-ESI-MS (Publication V). A mucic acid gallate, three isomers of mucic acid lactone gallate, a galloylglucose, gallic acid, a digalloylglucose, putranjivain A, a galloyl-HHDP-glucose, elaeocarpusin and chebulagic acid represented the major phenolic compounds in fruits of emblic leafflower. In conclusion, results of this study significantly increase the current knowledge on the key bioactive and nutritional components of hawthorn and emblic leafflower fruits. These results provide important information for research on the mechanism responsible for the health benefits of these fruits.
Resumo:
Käytetyn voiteluöljyn regeneroinnissa muodostuu prosessivettä useista lähteistä. Tehokas päästöjenhallinta on yksi tärkeimmistä tavoitteista regenerointilaitoksen operoinnissa ja sen takia sitä tulee kehittää jatkuvasti entistä paremmaksi. Tavoitteisiin pääsemiseksi on oleellista tunnistaa vesienkäsittelyprosessin laadullinen massatase ja laadunvaihtelut ajotilanteiden mukaan. Työssä tutkitaan ja analysoidaan veden sisältämiä epäpuhtauksia sekä kirjallisuuslähteiden perusteella, että standardimenetelmillä ja modifioiduilla menetelmillä, joilla on akkreditointi. Analyysituloksista muodostetaan laadullinen massatase, josta nähdään epäpuhtauksien ja niitä kuvaavien parametrien kuormitukset kussakin prosessivesivirrassa. Tulosten perusteella arvioidaan nykyisen vesienkäsittelyn tehokkuutta, sen säätömahdollisuuksia ja kehitystarvetta. Tarkastelun ulkopuolelle kuitenkin jätetään vesienkäsittelystä ulosjohdettavan prosessiveden puhdistuslaitos. Tutkimusten perusteella regenerointilaitoksessa muodostuvien prosessivesien epäpuhtaudet koostuvat öljystä, BTEX-yhdisteistä, fenoliyhdisteistä, liuottimista, polttoaineiden ja voiteluöljyjen lisäaineista, typpi- ja rikkiyhdisteistä, metalliyhdisteistä sekä kiintoaineesta. Öljy jakautuu kevyisiin (C5-C10), keskiraskaisiin (C10-21) ja raskaisiin (C21-40) jakeisiin. Vesienkäsittelyssä suurin osa öljystä ja epäpuhtauksista saadaan erottumaan vedestä, jolloin puhdistuslaitokselle päätyy jäämäpitoisuudet öljyä, haihtuvia yhdisteitä sekä muita epäpuhtauksia. Puhdistuslaitosta kuormittavat eniten liuenneet orgaaniset yhdisteet sekä korkeaa kemiallista hapenkulutusta aiheuttavat epäorgaaniset yhdisteet (suolat), joiden erottamista prosessivesistä on syytä tulevaisuudessa kehittää.
Resumo:
This thesis describes work related to the in-depth characterization of the phenolic compounds of silver birch (Betula pendula) inner bark. Phenolic compounds are the most ubiquitous class of plant secondary compounds. The unifying feature of this structurally diverse group is an aromatic ring containing at least one hydroxyl group. Due to the structural diversity, phenolics have various roles in the plant defense against biotic and abiotic stresses. In addition, they can confer several health-promoting properties to humans. Furthermore, the structural diversity of this class of compounds causes challenges for their analysis. The study species in the present work, silver birch, is economically the most important hard wood species in northern Europe. Its inner bark contains a high level of phenolic compounds and it has shown one of the strongest antioxidant activities among 92 Finnish plant materials. The literature review surveys the diversity and organ specific distribution of phenolic compounds in silver birch as well as the proposed ecological functions of phenolic compounds in nature. In addition, the basis for the characterization of phenolics by mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), and circular dichroism spectroscopy (CD) are reviewed. The objective of the experimental work was to extract, purify, characterize, and quantify the inner bark phenolic compounds. Overall 36 compounds were characterized by MS and ultraviolet spectroscopy (UV). 24 compounds were isolated and their structures confirmed by NMR and CD spectroscopy. Five novel natural compounds were identified. Special emphasis was placed on the establishment of a method for the characterization of proanthocyanidins (PAs). Hydrophilic interaction liquid chromatography (HILIC) was utilized because of its high resolution power and predictable elution order of oligomeric and polymeric PAs according to an increasing degree of polymerization. The combination of HILIC and high-resolution MS detection allowed the identification of procyanidin (PC) polymers up to the degree of polymerization of 22. In addition, a series of oligomeric and polymeric PC monoxylosides were observed for the first time in nature. Season and genotype influenced the quantities of the main inner bark phenolics, yet qualitative differences were not observed. However, manual wounding of the inner bark induced the production of ellagitannins (ETs) in the wounded tissues, i.e. callus. Since ETs were not detected in the intact inner bark, this finding may reflect the capacity of silver birch to exploit ellagitannins in its defense.
Resumo:
Reciprocal selection between interacting species is a major driver of biodiversity at both the genetic and the species level. This reciprocal selection, or coevolution, has led to the diversification of two highly diverse and abundant groups of organisms, flowering plants and their insect herbivores. In heterogeneous environments, the outcome of coevolved species interactions is influenced by the surrounding community and/or the abiotic environment. The process of adaptation allows species to adapt to their local conditions and to local populations of interacting species. However, adaptation can be disrupted or slowed down by an absence of genetic variation or by increased inbreeding, together with the following inbreeding depression, both of which are common in small and isolated populations that occur in fragmented environments. I studied the interaction between a long-lived plant Vincetoxicum hirundinaria and its specialist herbivore Abrostola asclepiadis in the southwestern archipelago of Finland. I focused on mutual local adaptation of plants and herbivores, which is a demonstration of reciprocal selection between species, a prerequisite for coevolution. I then proceeded to investigate the processes that could potentially hamper local adaptation, or species interaction in general, when the population size is small. I did this by examining how inbreeding of both plants and herbivores affects traits that are important for interaction, as well as among-population variation in the effects of inbreeding. In addition to bi-parental inbreeding, in plants inbreeding can arise from self-fertilization which has important implications for mating system evolution. I found that local adaptation of the plant to its herbivores varied among populations. Local adaptation of the herbivore varied among populations and years, being weaker in populations that were most connected. Inbreeding caused inbreeding depression in both plants and herbivores. In some populations inbreeding depression in herbivore biomass was stronger in herbivores feeding on inbred plants than in those feeding on outbred ones. For plants it was the other way around: inbreeding depression in anti-herbivore resistance decreased when the herbivores were inbred. Underlying some of the among-population variation in the effects of inbreeding is variation in plant phenolic compounds. However, variation in the modification of phenolic compounds in the digestive tract of the herbivore did not explain the inbreeding depression in herbivore biomass. Finally, adult herbivores had a preference for outbred host plants for egg deposition, and herbivore inbreeding had a positive effect on egg survival when the eggs were exposed to predators and parasitoids. These results suggest that plants and herbivores indeed exert reciprocal selection, as demonstrated by the significant local adaptation of V. hirundinaria and A. asclepiadis to one another. The most significant cause of disruption of the local adaptation of herbivore populations was population connectivity, and thus probably gene flow. In plants local adaptation tended to increase with increasing genetic variation. Whether or not inbreeding depression occurred varied according to the life-history stage of the herbivore and/or the plant trait in question. In addition, the effects of inbreeding strongly depended on the population. Taken together, inbreeding modified plant-herbivore interactions at several different levels, and can thus affect the strength of reciprocal selection between species. Thus inbreeding has the potential to affect the outcome of coevolution.
Resumo:
Suomalaiset marjat sisältävät huomattavia määriä erilaisia fenoliyhdisteitä ja ne ovat siksi erinomaisia fenoliyhdisteiden lähteitä moniin muihin elintarvikkeisiin verrattuna. Fenoliyhdisteet ovat kasveissa syntyviä aineenvaihduntatuotteita, joilla on todettu olevan terveyden kannalta positiivia vaikutuksia. Ne antavat kasvikunnan tuotteille niiden tunnusomaisen värin sekä toimivat suoja-aineina taudinaiheuttajia vastaan. Erityisesti elintarvike-, lääke- ja kosmetiikkateollisuus jalostavat marjoja erilaisiksi lopputuotteiksi. Fenoliyhdisteet tuovat näihin tuotteisiin hyödyllisiä terveysvaikutuksia ja ne voivat toimia niissä myös väripigmentteinä. Fenoliyhdisteet ovat kuitenkin suhteellisen epästabiileja yhdisteitä. On havaittu, että prosessointi- ja säilytystavat vaikuttavat huomattavasti niiden stabiilisuuteen ja hajoamiseen. Tämän kandidaatintyön tavoitteena oli selvittää fenoliyhdisteiden stabiilisuuteen vaikuttavia tekijöitä prosessoinnin ja säilytyksen aikana kirjallisuuden pohjalta. Tämän työn tulosten perusteella marjojen prosessointi kannattaa suorittaa mahdollisimman lyhyessä ajassa matalissa lämpötiloissa, sillä monet fenoliyhdisteistä eivät ole pitkään lämpöstabiileja. Säilytys kannattaa tehdä myös matalissa lämpötiloissa; pitkänä säilytysaikana pakastettuna. Korkea pH vaikuttaa usean fenoliyhdisteen hajoamiseen ja se saattaa aiheuttaa tuotteissa värinmuutoksia. Valo, hapen läsnäolo sekä erilaiset muut yhdisteet voivat vaikuttaa heikentävästi fenoliyhdisteiden stabiilisuuteen sekä prosessoinnin että säilytyksen aikana. Fenoliyhdisteiden stabiilisuus on hyvin rakennekohtaista ja siksi prosessoinnin ja säilytyksen tarkkojen vaikutusten yleistäminen kaikkiin fenoliyhdisteisiin on vaikeaa.
Resumo:
In this thesis, cleaning of ceramic filter media was studied. Mechanisms of fouling and dissolution of iron compounds, as well as methods for cleaning ceramic membranes fouled by iron deposits were studied in the literature part. Cleaning agents and different methods were closer examined in the experimental part of the thesis. Pyrite is found in the geologic strata. It is oxidized to form ferrous ions Fe(II) and ferric ions Fe(III). Fe(III) is further oxidized in the hydrolysis to form ferric hydroxide. Hematite and goethite, for instance, are naturally occurring iron oxidesand hydroxides. In contact with filter media, they can cause severe fouling, which common cleaning techniques competent enough to remove. Mechanisms for the dissolution of iron oxides include the ligand-promoted pathway and the proton-promoted pathway. The dissolution can also be reductive or non-reductive. The most efficient mechanism is the ligand-promoted reductive mechanism that comprises two stages: the induction period and the autocatalytic dissolution.Reducing agents(such as hydroquinone and hydroxylamine hydrochloride), chelating agents (such as EDTA) and organic acids are used for the removal of iron compounds. Oxalic acid is the most effective known cleaning agent for iron deposits. Since formulations are often more effective than organic acids, reducing agents or chelating agents alone, the citrate¿bicarbonate¿dithionite system among others is well studied in the literature. The cleaning is also enhanced with ultrasound and backpulsing.In the experimental part, oxalic acid and nitric acid were studied alone andin combinations. Also citric acid and ascorbic acid among other chemicals were tested. Soaking experiments, experiments with ultrasound and experiments for alternative methods to apply the cleaning solution on the filter samples were carried out. Permeability and ISO Brightness measurements were performed to examine the influence of the cleaning methods on the samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the solutions was carried out to determine the dissolved metals.
Resumo:
Iron is one of the most common elements in the earth’s crust and thus its availability and economic viability far exceed that of metals commonly used in catalysis. Also the toxicity of iron is miniscule, compared to the likes of platinum and nickel, making it very desirable as a catalyst. Despite this, prior to the 21st century, the applicability of iron in catalysis was not thoroughly investigated, as it was considered to be inefficient and unselective in desired transformations. In this doctoral thesis, the application of iron catalysis in combination with organosilicon reagents for transformations of carbonyl compounds has been investigated together with insights into iron catalyzed chlorination of silanes and silanols. In the first part of the thesis, the synthetic application of iron(III)-catalyzed chlorination of silanes (Si-H) and the monochlorination of silanes (SiH2) using acetyl chloride as the chlorine source is described. The reactions proceed under ambient conditions, although some compounds need to be protected from excess moisture. In addition, the mechanism and kinetics of the chlorination reaction are briefly adressed. In the second part of this thesis a versatile methodology for transformation of carbonyl compounds into three different compound classes by changing the conditions and amounts of reagents is discussed. One pot reductive benzylation, reductive halogenation and reductive etherification of ketones and aldehydes using silanes as the reducing agent, halide source or cocatalyst, were investigated. Also the reaction kinetics and mechanism of the reductive halogenation of acetophenone are briefly discussed.
Resumo:
Diplomityön tarkoituksena oli tutkia ja kehittää käyttökohde kaivosteollisuudessa syntyvälle märälle kipsisivuvirralle, joka sisältää metalliepäpuhtauksina alumiinia, rautaa ja mangaania ja jonka määrä on noin 1 000 000 t/a. Kirjallisuuden pohjalta tutkittiin aluksi mahdollisuutta hyödyntää kipsiaines asfaltti- ja sementtiteollisuuden raaka-aineena. Sementin joukkoon lisätään tavallisesti noin 5 p-% kipsiä, mutta harvinaisimpiin sementtilaatuihin sitä voidaan lisätä jopa 30 p-%. Tästä huolimatta vain pieni osa tutkimuksen kohteessa syntyvästä kipsisivuvirrasta voitaisiin hyödyntää tässä sovelluksessa. Lisäksi kipsisivuvirran sisältämät epäpuhtaudet täytyisi poistaa tai saattaa inaktiiviseen muotoon. Myöskään sen kosteuspitoisuus ei saisi olla suuri. Näin ollen tämän kipsisivuvirran hyödyntäminen asfaltti- ja sementtiteollisuuden lisäaineena ei ole mahdollista Seuraavaksi harkittiin kipsin kierrättämistä, jolloin yhtenä vaihtoehtona oli hajottaa kipsi termisesti rikkioksideiksi ja valmistaa niistä rikkihappoa. Taloudellisista syistä hajoamistuotteen on oltava rikkitrioksidia, josta voitaisiin veteen imeyttämällä valmistaa rikkihappoa. Kipsin hajottaminen termovaa´alla osoitti, että kipsi vaatii noin 1400 ºC:n lämpötilan ja haihtuvat komponentit ovat H2O, SO ja SO2, muttei SO3. Alempien oksidien muuttaminen rikkihapoksi vaatisi katalyyttisen hapetuksen, mikä olisi käytännössä liian kallista. Toisena vaihtoehtona kipsin kierrättämiseksi tutkittiin sen biologista pelkistämistä rikkivedyksi ja kalsiumhydroksidilietteeksi. Laboratoriossa Ca(OH)2-lietteestä valmistettiin hiilidioksidin avulla kalsiumkarbonaattia, jolloin päästiin 90 %:n kalsiumhydroksidin konversiossa. Lisäksi alumiinihydroksidi saatiin erotettua kipsilietteestä kokeellisesti hydrosyklonin avulla. Diplomityössä päädyttiin siihen, että sulfaatin biologinen pelkistäminen ja alumiinihydroksidin mekaaninen erotus jatkuvatoimisesti on varteenotettava vaihtoehto kipsisivuvirran hyödyntämiseksi.
DPS-Like Peroxide Resistance Protein: Structural and Functional Studies on a Versatile Nanocontainer
Resumo:
Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H
Resumo:
The dewatering of iron ore concentrates requires large capacity in addition to producing a cake with low moisture content. Such large processes are commonly energy intensive and means to lower the specific energy consumption are needed. Ceramic capillary action disc filters incorporate a novel filter medium enabling the harnessing of capillary action, which results in decreased energy consumption in comparison to traditional filtration technologies. As another benefit, the filter medium is mechanically and chemically more durable than, for example, filter cloths and can, thus, withstand harsh operating conditions and possible regeneration better than other types of filter media. In iron ore dewatering, the regeneration of the filter medium is done through a combination of several techniques: (1) backwashing, (2) ultrasonic cleaning, and (3) acid regeneration. Although it is commonly acknowledged that the filter medium is affected by slurry particles and extraneous compounds, published research, especially in the field of dewatering of mineral concentrates, is scarce. Whereas the regenerative effect of backwashing and ultrasound are more or less mechanical, regeneration with acids is based on chemistry. The chemistry behind the acid regeneration is, naturally, dissolution. The dissolution of iron oxide particles has been extensively studied over several decades but those studies may not necessarily be directly applicable in the regeneration of the filter medium which has undergone interactions with the slurry components. The aim of this thesis was to investigate if free particle dissolution indeed correlates with the regeneration of the filter medium. For this purpose, both free particle dissolution and dissolution of surface adhered particles were studied. The focus was on acidic dissolution of iron oxide particles and on the study of the ceramic filter medium used in the dewatering of iron ore concentrates. The free particle dissolution experiments show that the solubility of synthetic fine grained iron oxide particles in oxalic acid could be explained through linear models accounting for the effects of temperature and acid concentration, whereas the dissolution of a natural magnetite is not so easily explained by such models. In addition, the kinetic experiments performed both support and contradict the work of previous authors: the suitable kinetic model here supports previous research suggesting solid state reduction to be the reaction mechanism of hematite dissolution but the formation of a stable iron oxalate is not supported by the results of this research. Several other dissolution mechanisms have also been suggested for iron oxide dissolution in oxalic acid, indicating that the details of oxalate promoted reductive dissolution are not yet agreed and, in this respect, this research offers added value to the community. The results of the regeneration experiments with the ceramic filter media show that oxalic acid is highly effective in removing iron oxide particles from the surface of the filter medium. The dissolution of those particles did not, however, exhibit the expected behaviour, i.e. complete dissolution. The results of this thesis show that although the regeneration of the ceramic filter medium with acids incorporates the dissolution of slurry particles from the surface of the filter medium, the regeneration cannot be assessed purely based upon free particle dissolution. A steady state, dependent on temperature and on the acid concentration, was observed in the dissolution of particles from the surface even though the limit of solubility of free iron oxide particles had not been reached. Both the regeneration capacity and efficiency, with regards to the removal of iron oxide particles, was found to be temperature dependent, but was not affected by the acid concentration. This observation further suggests that the removal of the surface adhered particles does not follow the dissolution of free particles, which do exhibit a dependency on the acid concentration. In addition, changes in the permeability and in the pore structure of the filter medium were still observed after the bulk concentration of dissolved iron had reached a steady state. Consequently, the regeneration of the filter medium continued after the dissolution of particles from the surface had ceased. This observation suggests that internal changes take place at the final stages of regeneration. The regeneration process could, in theory, be divided into two, possibly overlapping, stages: (1) dissolution of surface-adhered particles, and (2) dissolution of extraneous compounds from within the pore structure. In addition to the fundamental knowledge generated during this thesis, tools to assess the effects of parameters on the regeneration of the ceramic filter medium are needed. It has become clear that the same tools used to estimate the dissolution of free particles cannot be used to estimate the regeneration of a filter medium unless only a robust characterisation of the order of regeneration efficiency is needed.