25 resultados para hook-and-loop (HL)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Airlift reactors are pneumatically agitated reactors that have been widely used in chemical, petrochemical, and bioprocess industries, such as fermentation and wastewater treatment. Computational Fluid Dynamics (CFD) has become more popular approach for design, scale-up and performance evaluation of such reactors. In the present work numerical simulations for internal-loop airlift reactors were performed using the transient Eulerian model with CFD package, ANSYS Fluent 12.1. The turbulence in the liquid phase is described using κ- ε the model. Global hydrodynamic parameters like gas holdup, gas velocity and liquid velocity have been investigated for a range of superficial gas velocities, both with 2D and 3D simulations. Moreover, the study of geometry and scale influence on the reactor have been considered. The results suggest that both, geometry and scale have significant effects on the hydrodynamic parameters, which may have substantial effects on the reactor performance. Grid refinement and time-step size effect have been discussed. Numerical calculations with gas-liquid-solid three-phase flow system have been carried out to investigate the effect of solid loading, solid particle size and solid density on the hydrodynamic characteristics of internal loop airlift reactor with different superficial gas velocities. It was observed that averaged gas holdup is significantly decreased with increasing slurry concentration. Simulations show that the riser gas holdup decreases with increase in solid particle diameter. In addition, it was found that the averaged solid holdup increases in the riser section with the increase of solid density. These produced results reveal that CFD have excellent potential to simulate two-phase and three-phase flow system.
Resumo:
The improvement of the dynamics of flexible manipulators like log cranes often requires advanced control methods. This thesis discusses the vibration problems in the cranes used in commercial forestry machines. Two control methods, adaptive filtering and semi-active damping, are presented. The adaptive filter uses a part of the lowest natural frequency of the crane as a filtering frequency. The payload estimation algorithm, filtering of control signal and algorithm for calculation of the lowest natural frequency of the crane are presented. The semi-active damping method is basedon pressure feedback. The pressure vibration, scaled with suitable gain, is added to the control signal of the valve of the lift cylinder to suppress vibrations. The adaptive filter cuts off high frequency impulses coming from the operatorand semi-active damping suppresses the crane?s oscillation, which is often caused by some external disturbance. In field tests performed on the crane, a correctly tuned (25 % tuning) adaptive filter reduced pressure vibration by 14-17 % and semi-active damping correspondingly by 21-43%. Applying of these methods require auxiliary transducers, installed in specific points in the crane, and electronically controlled directional control valves.
Resumo:
Pulsewidth-modulated (PWM) rectifier technology is increasingly used in industrial applications like variable-speed motor drives, since it offers several desired features such as sinusoidal input currents, controllable power factor, bidirectional power flow and high quality DC output voltage. To achieve these features,however, an effective control system with fast and accurate current and DC voltage responses is required. From various control strategies proposed to meet these control objectives, in most cases the commonly known principle of the synchronous-frame current vector control along with some space-vector PWM scheme have been applied. Recently, however, new control approaches analogous to the well-established direct torque control (DTC) method for electrical machines have also emerged to implement a high-performance PWM rectifier. In this thesis the concepts of classical synchronous-frame current control and DTC-based PWM rectifier control are combined and a new converter-flux-based current control (CFCC) scheme is introduced. To achieve sufficient dynamic performance and to ensure a stable operation, the proposed control system is thoroughly analysed and simple rules for the controller design are suggested. Special attention is paid to the estimationof the converter flux, which is the key element of converter-flux-based control. Discrete-time implementation is also discussed. Line-voltage-sensorless reactive reactive power control methods for the L- and LCL-type line filters are presented. For the L-filter an open-loop control law for the d-axis current referenceis proposed. In the case of the LCL-filter the combined open-loop control and feedback control is proposed. The influence of the erroneous filter parameter estimates on the accuracy of the developed control schemes is also discussed. A newzero vector selection rule for suppressing the zero-sequence current in parallel-connected PWM rectifiers is proposed. With this method a truly standalone and independent control of the converter units is allowed and traditional transformer isolation and synchronised-control-based solutions are avoided. The implementation requires only one additional current sensor. The proposed schemes are evaluated by the simulations and laboratory experiments. A satisfactory performance and good agreement between the theory and practice are demonstrated.
Resumo:
Diplomityön tavoitteena on tutkia ja kehittää menetelmä tuotekehitysprojektin ajalliselle ennustamiselle tuotteen siirtyessä tuotekehityksestä massatuotantoon. Ajallisen ennustamisen merkitys korostuu mitä lähemmäksi uuden tuotteen massatuotannon aloittaminen (ramp-up) tulee, koska strategiset päätökset koskien mm. uusia tuotantolinjoja, materiaalien- ja komponenttien tilaamisia sekä vahvistus asiakastoimitusten aloittamista täytyy tehdä jo paljon aikaisemmin.Työ aloitetaan tutkimalla rinnakkaista insinöörityötä (concurrent engineering) sekä suoritusten mittaamista (performance measurement), joiden sisältämistä ajattelumalleista, työkaluista ja tekniikoista hahmottuivat ajallisen ennustettavuuden onnistumisen edellytykset. Näitä olivat suunnitellun tuotteen ja tuotekehitysprosessin laatu sekä resurssien ja tiimien kompetenssit. Toisaalta ajalliseen ennustettavuuteen vaikuttavat myös projektien riippuvuudet ulkoisista toimittajista ja heidän aikatauluistaan.Teoreettisena viitekehyksenä käytetään Bradford L. Goldense:n luomaa mallia tuotekehityksen proaktiiviseksi mittaamiseksi sekä sovelletaan W. Edward Deming:in jatkuvan parantamisen silmukkaa. Työssä kehitetään Ramp-up Predictability konsepti, joka koostuu keskipitkän ja pitkän aikavälin ennustamisesta. Työhön ei kuulunut mallin käyttöönotto ja seuranta.Toimenpide ehdotuksena esitetään lisätutkimusta mittareiden keskinäisestä korrelaatioista ja niiden luotettavuudesta sekä mallien tarjoamista mahdollisuuksista muille tulosyksiköille.
Resumo:
Työn teoriaosassa esitetään kirjallisuudessa esiintyviä teoreettisia ja kokeellisia yhtälöitä nesteen nopeuden, kaasun tilavuusosuuden, painehäviön ja lämmönsiirron laskemiseksi. Lisäksi käsitellään airlift-reaktoreiden toimintaa, rakennetta ja teollisia sovelluksia, sekä sekoitusta ja geometrian vaikutusta airlift-reaktoreiden hydrodynaamisiin ominaisuuksiin. Kokeellisessa osassa kuvataan käytetty koelaitteisto ja mittausmenetelmät sekä esitetään saadut koetulokset. Koelaitteisto on viidellä nousuputkella varustettu ulkoisen kierron airlift-reaktori. Kokeellisessa osassa pyritään ratkaisemaan tällaisessa reaktorissa mahdollisesti esiintyviä ongelmia, kuten "slug flown" muodostuminen nousuputkissa sekä fluidien epätasainen jakautuminen nousuputkiin. Lisäksi tutkitaan erilaisten muuttujien, kuten kaasun tilavuusvirran, nesteen viskositeetin, suutinkoon ja nesteen jakoputken rakenteen, vaikutusta kaasun tilavuusosuuteen ja nesteen nopeuteen nousuputkissa. Nesteen nopeudet mitataan merkkiainemenetelmällä ja kaasun tilavuusosuudet manometrimenetelmällä. Lämmönsiirtoa tutkitaan mittaamalla lämpötilaeroja nousuputkissa NiCr-Ni –termoelementeillä. Mittaustulosten perusteella muokataan korrelaatiot kaasun tilavuusosuudelle ja nesteen tyhjäputkinopeudelle. Korrelaatioista lasketut tulokset sopivat kohtuullisen hyvin yhteen mitattujen tulosten kanssa. "Slug flown" ei todettu muodostuvan ongelmaksi 2.5 mPa s pienemmillä viskositeetin arvoilla 2 metriä pitkissä ja 19 mm halkaisijaltaan olevissa putkissa. Lisäksi todettiin, että kaasu- ja nestefaasien jakautumisongelmat voidaan ratkaista rakenteellisesti.
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.
Resumo:
Data transmission between an electric motor and a frequency converter is required in variablespeed electric drives because of sensors installed at the motor. Sensor information can be used for various useful applications to improve the system reliability and its properties. Traditionally, the communication medium is implemented by an additional cabling. However, the costs of the traditional method may be an obstacle to the wider application of data transmission between a motor and a frequency converter. In any case, a power cable is always installed between a motor and a frequency converter for power supply, and hence it may be applied as a communication medium for sensor level data. This thesis considers power line communication (PLC) in inverter-fed motor power cables. The motor cable is studied as a communication channel in the frequency band of 100 kHz−30 MHz. The communication channel and noise characteristics are described. All the individual components included in a variable-speed electric drive are presented in detail. A channel model is developed, and it is verified by measurements. A theoretical channel information capacity analysis is carried out to estimate the opportunities of a communication medium. Suitable communication and forward error correction (FEC) methods are suggested. A general method to implement a broadband and Ethernet-based communication medium between a motor and a frequency converter is proposed. A coupling interface is also developed that allows to install the communication device safely to a three-phase inverter-fed motor power cable. Practical tests are carried out, and the results are analyzed. Possible applications for the proposed method are presented. A speed feedback motor control application is verified in detail by simulations and laboratory tests because of restrictions for the delay in the feedback loop caused by PLC. Other possible applications are discussed at a more general level.
Resumo:
Validation and verification operations encounter various challenges in product development process. Requirements for increasing the development cycle pace set new requests for component development process. Verification and validation usually represent the largest activities, up to 40 50 % of R&D resources utilized. This research studies validation and verification as part of case company's component development process. The target is to define framework that can be used in improvement of the validation and verification capability evaluation and development in display module development projects. Validation and verification definition and background is studied in this research. Additionally, theories such as project management, system, organisational learning and causality is studied. Framework and key findings of this research are presented. Feedback system according of the framework is defined and implemented to the case company. This research is divided to the theory and empirical parts. Theory part is conducted in literature review. Empirical part is done in case study. Constructive methode and design research methode are used in this research A framework for capability evaluation and development was defined and developed as result of this research. Key findings of this study were that double loop learning approach with validation and verification V+ model enables defining a feedback reporting solution. Additional results, some minor changes in validation and verification process were proposed. There are a few concerns expressed on the results on validity and reliability of this study. The most important one was the selected research method and the selected model itself. The final state can be normative, the researcher may set study results before the actual study and in the initial state, the researcher may describe expectations for the study. Finally reliability of this study, and validity of this work are studied.
Resumo:
It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.
Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations
Resumo:
A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.
Resumo:
Neuromuscular blocking agents (NMBAs) are widely used in clinical anaesthesia and emergency medicine. Main objectives are to facilitate endotracheal intubation and to allow surgery by reducing muscle tone and eliminating sudden movements, which may otherwise lead to trauma and complications. The most commonly used NMBAs are non-depolarizing agents with a medium duration of action, such as rocuronium and cisatracurium. They bind to the acetylcholine receptors in the neuromuscular junction, thus inhibiting the depolarization of the postsynaptic (muscular) membrane, which is a prerequisite for muscle contraction to take place. Previously, it has been assumed that nitrous oxide (N2O), which is commonly used in combination with volatile or intravenous anaesthetics during general anaesthesia, has no effect on NMBAs. Several studies have since claimed that N2O in fact does increase the effect of NMBAs when using bolus administration of the relaxant. The effect of N2O on the infusion requirements of two NMBAs (rocuronium and cisatracurium) with completely different molecular structure and pharmacological properties was assessed. A closed-loop feedback controlled infusion of NMBA with duration of at least 90 minutes at a 90% level of neuromuscular block was used. All patients received total intravenous anaesthesia (TIVA) with propofol and remifentanil. In both studies the study group (n=35) received N2O/Oxygen and the control group (n=35) Air/Oxygen. There were no significant differences in the mean steady state infusion requirements of NMBA (rocuronium in Study I; cisatracurium in Study II) between the groups in either study. In Study III the duration of the unsafe period of recovery after reversal of rocuronium-induced neuromuscular block by using neostigmine or sugammadex as a reversal agent was analyzed. The unsafe period of recovery was defined as the time elapsed from the moment of no clinical (visual) fade in the train-of-four (TOF) sequence until an objectively measured TOF-ratio of 0.90 was achieved. The duration of these periods were 10.3 ± 5.5 and 0.3 ± 0.3 min after neostigmine and sugammadex, respectively (P < 0.001). Study IV investigated the possible effect of reversal of a rocuronium NMB by sugammadex on depth of anaesthesia as indicated by the bispectral index and entropy levels in thirty patients. Sugammadex did not affect the level of anaesthesia as determined by EEG-derived indices of anaesthetic depth such as the bispectral index and entropy.
Resumo:
Alpha2-Adrenoceptors: structure and ligand binding properties at the molecular level The mouse is the most frequently used animal model in biomedical research, but the use of zebrafish as a model organism to mimic human diseases is on the increase. Therefore it is considered important to understand their pharmacological differences from humans also at the molecular level. The zebrafish Alpha2-adrenoceptors were expressed in mammalian cells and the binding affinities of 20 diverse ligands were determined and compared to the corresponding human receptors. The pharmacological properties of the human and zebrafish Alpha2--adrenoceptors were found to be quite well conserved. Receptor models based on the crystal structures of bovine rhodopsin and the human Beta2-adrenoceptor revealed that most structural differences between the paralogous and orthologous Alpha2--adrenoceptors were located within the second extracellular loop (XL2). Reciprocal mutations were generated in the mouse and human Alpha2--adrenoceptors. Ligand binding experiments revealed that substitutions in XL2 reversed the binding profiles of the human and mouse Alpha2--adrenoceptors for yohimbine, rauwolscine and RS-79948-197, evidence for a role for XL2 in the determination of species-specific ligand binding. Previous mutagenesis studies had not been able to explain the subtype preference of several large Alpha2--adrenoceptor antagonists. We prepared chimaeric Alpha2--adrenoceptors where the first transmembrane (TM1) domain was exchanged between the three human Alpha2--adrenoceptor subtypes. The binding affinities of spiperone, spiroxatrine and chlorpromazine were observed to be significantly improved by TM1 substitutions of the Alpha2a--adrenoceptor. Docking simulations indicated that indirect effects, such as allosteric modulation, are more likely to be involved in this phenomenon rather than specific side-chain interactions between ligands and receptors.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
The Theorica Pantegni is a medieval medical textbook written in Latin. The author was Constantine the African (Constantinus Africanus), a monk of Tunisian origin. He compiled the work in the latter half of the eleventh century at the Benedictine monastery of Monte Cassino in Italy. - Manuscript Eö.II.14, containing the Theorica Pantegni published here, belongs today to the National Library of Finland. It can be dated to the third quarter of the twelfth century, which makes it one of the earliest surviving exemplars of the Theorica Pantegni: over seventy manuscripts of the work survive, of which about fifteen can be dated to the twelfth century. Manuscript Eö.II.14 is written in black ink on 210 parchment leaves (recto and verso), amounting to 420 pages, in pre-Gothic script. - The present text is a transcription of Ms Eö.II.14. The goal is to provide the reader with an accessible text that is faithful to the original.
Resumo:
The purpose of this doctoral thesis is to widen and develop our theoretical frameworks for discussion and analyses of feedback practices in management accounting, particularly shedding light on its formal and informal aspects. The concept of feedback in management accounting has conventionally been analyzed within cybernetic control theory, in which feedback flows as a diagnostic or comparative loop between measurable outputs and pre-set goals (see e.g. Flamholtz et al. 1985; Flamholtz 1996, 1983), i.e. as a formal feedback loop. However, the everyday feedback practices in organizations are combinations of formal and informal elements. In addition to technique-driven feedback approaches (like budgets, measurement, and reward systems) we could also categorize social feedback practices that managers see relevant and effective in the pursuit of organizational control. While cybernetics or control theories successfully capture rational and measured aspects of organizational performance and offer a broad organizational context for the analysis, many individual and informal aspects remain vague and isolated. In order to discuss and make sense of the heterogeneous field of interpretations of formal and informal feedback, both in theory and practice, dichotomous approaches seem to be insufficient. Therefore, I suggest an analytical framework of formal and informal feedback with three dimensions (3D’s): source, time, and rule. Based on an abductive analysis of the theoretical and empirical findings from an interpretive case study around a business unit called Division Steelco, the 3Dframework and formal and informal feedback practices are further elaborated vis-á-vis the four thematic layers in the organizational control model by Flamholtz et al. (1985; Flamholtz 1996, 1983): core control system, organizational structure, organizational culture, and external environment. Various personal and cultural meanings given to the formal and informal feedback practices (“feedback as something”) create multidimensional interpretative contexts. Multidimensional frameworks aim to capture and better understand both the variety of interpretations and their implications to the functionality of feedback practices, important in interpretive research.