5 resultados para high density single nucleotide polymorphism microarray
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Alpha2-Adrenoceptors are cell-surface G protein coupled receptors that mediate many of the effects of the catecholamines noradrenaline and adrenaline. The three human α2-adrenoceptor subtypes are widely expressed in different tissues and organs, and they mediate many different physiological and pharmacological effects in the central and peripheral nervous system and as postsynaptic receptors in target organs. Previous studies have demonstrated that α2-adrenoceptors mediate both vascular constriction and dilatation in humans. Large inter-individual variation has been observed in the vascular responses to α2-adrenoceptor activation in clinical studies. All three receptor subtypes are potential drug targets. It was therefore considered important to further elucidate the details of adrenergic vascular regulation and its genetic variation, since such knowledge may help to improve the development of future cardiovascular drugs and intensive care therapies. Dexmedetomidine is the most selective and potent α2-adrenoceptor agonist currently available for clinical use. When given systemically, dexmedetomidine induces nearly complete sympatholysis already at low concentrations, and postsynaptic effects, such vasoconstriction, can be observed with increasing concentrations. Thus, local infusions of small doses of dexmedetomidine into dorsal hand veins and the application of pharmacological sympathectomy with brachial plexus block provide a means to assess drug-induced peripheral vascular responses without interference from systemic pharmacological effects and autonomic nervous system regulation. Dexmedetomidine was observed to have biphasic effects on haemodynamics, with an initial decrease in blood pressure at low concentrations followed by substantial increases in blood pressure and coronary vascular resistance at high concentrations. Plasma concentrations of dexmedetomidine that significantly exceeded the recommended therapeutic level did not reduce myocardial blood flow below the level that is observed with the usual therapeutic concentrations and did not induce any evident myocardial ischaemia in healthy subjects. Further, it was demonstrated that dexmedetomidine also had significant vasodilatory effects through activation of endothelial nitric oxide synthesis, and thus when the endothelial component of the blood vessel response to dexmedetomidine was inhibited, peripheral vasoconstriction was augmented. Hand vein constriction responses to α2-adrenoceptor activation by dexmedetomidine were only weakly associated with the constriction responses to α1-adrenoceptor activation, pointing to independent cellular regulation by these two adrenoceptor classes. Substantial inter-individual variation was noted in the venous constriction elicited by activation of α2-adrenoceptors by dexmedetomidine. In two study populations from two different continents, a single nucleotide polymorphism in the PRKCB gene was found to be associated with the dorsal hand vein constriction response to dexmedetomidine, suggesting that protein kinase C beta may have an important role in the vascular α2-adrenoceptor signalling pathways activated by dexmedetomidine.
Resumo:
Pertussis or whooping cough is a human respiratory tract infection and a vaccine-preventable disease that is caused by Bordetella pertussis bacteria. Pertussis vaccination has been part of the Finnish national vaccine program since 1952. Despite extensive vaccinations, the incidence of pertussis has increased in many countries during the last decades. Large epidemics have been observed also in countries with high vaccine coverage. Inter-individual variation in immune responses is always encountered after vaccination. Low vaccine responses may cause vulnerability to pertussis even straight after vaccination. Reasons for low responses are not fully understood. The innate immune system is responsible for the initial recognition of pathogens and vaccine antigens. The role of innate immunity on pertussis immunity has not been thoroughly investigated. Mannose-binding lectin (MBL) and toll-like receptor 4 (TLR4) are important molecules of the innate immune system and in the recognition of pathogens. Cytokines form a signaling network that have a notable role in immune responses after infections as well as after vaccinations. Single nucleotide polymorphism (SNP) is common in genes encoding these molecules and the polymorphisms have been reported to affect vaccine response after viral and bacterial vaccines. This study investigated the gene polymorphisms of MBL2, TLR4 and interleukin (IL)-10 promoter and their association with vaccine responses after acellular pertussis (aP) vaccination in Finnish adolescents and infants. Cell-mediated immune responses were investigated ten years after the previous pertussis vaccinations in young adults. In addition, the role of MBL deficiency in pertussis infection susceptibility was evaluated. The results of this study show that subjects with TLR4 polymorphism had lower antibody production and persistence after aP vaccination compared with normal allele. A specific SNP in the TLR4 gene was associated with decreased antibody responses and persistence in adolescents after aP booster vaccination. Cell-mediated immune responses were partly detected ten years after the previous vaccination; booster vaccine clearly enhanced the responses. In addition, subjects with IL-10 polymorphism had altered cell-mediated immune responses. MBL deficiency was found to be more frequent in pertussis patients than healthy controls but the polymorphism of MBL2 was not associated with antibody responses after acellular pertussis vaccination. The novel finding of this study was that genetic variation in the innate immune system seems to play a role in altered pertussis vaccine responses as well as in pertussis infection. These new findings enlighten the mechanisms behind the low responses after pertussis vaccination and help to predict risk factors related to this phenomenon.
Resumo:
Neuropeptide Y (NPY) is an abundant neurotransmitter in the brain and sympathetic nervous system (SNS). Hypothalamic NPY is known to be a key player in food intake and energy expenditure. NPY’s role in cardiovascular regulation has also been shown. In humans, a Leucine 7 to Proline 7 single nucleotide polymorphism (p.L7P) in the signal peptide of the NPY gene has been associated with traits of metabolic syndrome. The p.L7P subjects also show increased stress-related release of NPY, which suggests that more NPY is produced and released from SNS. The main objective of this study was to create a novel mouse model with noradrenergic cell-targeted overexpression of NPY, and to characterize the metabolic and vascular phenotype of this model. The mouse model was named OE-NPYDBH mouse. Overexpression of NPY in SNS and brain noradrenergic neurons led to increased adiposity without significant weight gain or increased food intake. The mice showed lipid accumulation in the liver at young age, which together with adiposity led to impaired glucose tolerance and hyperinsulinemia with age. The mice displayed stress-related increased mean arterial blood pressure, increased plasma levels of catecholamines and enhanced SNS activity measured by GDP binding activity to brown adipose tissue mitochondria. Sexual dimorphism in NPY secretion pattern in response to stress was also seen. In an experimental model of vascular injury, the OE-NPYDBH mice developed more pronounced neointima formation compared with wildtype controls. These results together with the clinical data indicate that NPY in noradrenergic cells plays an important role in the pathogenesis of metabolic syndrome and related diseases. Furthermore, new insights on the role of the extrahypothalamic NPY in the process have been obtained. The OE-NPYDBH model provides an important tool for further stress and metabolic syndrome-related studies.
Resumo:
High-throughput screening of cellular effects of RNA interference (RNAi) libraries is now being increasingly applied to explore the role of genes in specific cell biological processes and disease states. However, the technology is still limited to specialty laboratories, due to the requirements for robotic infrastructure, access to expensive reagent libraries, expertise in high-throughput screening assay development, standardization, data analysis and applications. In the future, alternative screening platforms will be required to expand functional large-scale experiments to include more RNAi constructs, allow combinatorial loss-of-function analyses (e.g. genegene or gene-drug interaction), gain-of-function screens, multi-parametric phenotypic readouts or comparative analysis of many different cell types. Such comprehensive perturbation of gene networks in cells will require a major increase in the flexibility of the screening platforms, throughput and reduction of costs. As an alternative for the conventional multi-well based high-throughput screening -platforms, here the development of a novel cell spot microarray method for production of high density siRNA reverse transfection arrays is described. The cell spot microarray platform is distinguished from the majority of other transfection cell microarray techniques by the spatially confined array layout that allow highly parallel screening of large-scale RNAi reagent libraries with assays otherwise difficult or not applicable to high-throughput screening. This study depicts the development of the cell spot microarray method along with biological application examples of high-content immunofluorescence and phenotype based cancer cell biological analyses focusing on the regulation of prostate cancer cell growth, maintenance of genomic integrity in breast cancer cells, and functional analysis of integrin protein-protein interactions in situ.