3 resultados para diphtheria pertussis tetanus vaccine
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Evolution of Bordetella pertussis post vaccination Whooping cough or pertussis is caused by the gram-negative bacterium Bordetella pertussis. It is a highly contiguous disease in the human respiratory tract. Characteristic of pertussis is a paroxysmal cough with whooping sound during gasps of breath after coughing episodes. It is potentially fatal to unvaccinated infants. The best approach to fight pertussis is to vaccinate. Vaccinations against pertussis have been available from the 1940s. Traditionally vaccines were whole-cell pertussis (wP) preparations as part of the combined diphtheria-tetanus-pertussis (DTP) vaccines. More recently acellular pertussis (aP) vaccines have replaced the wP vaccines in many countries. The aP vaccines are less reactogenic and can also be administered to school children and adults. There are several publications reporting variation in the i>B. pertussis virulence factors that are also aP vaccine antigens. This has occurred in the genes coding for pertussis toxin and pertactin about 15 to 30 years after the introduction of pertussis vaccines to immunisation programs. Resurgence of pertussis has also been reported in many countries with high vaccination coverage. In this study the evolution of B. pertussis was investigated in Finland, the United Kingdom, Poland, Serbia, China, Senegal and Kenya. These represent countries with a long history of high vaccination coverage with stable vaccines or changes in the vaccine formulation; countries which established high vaccination coverage late; and countries where vaccinations against pertussis were started late. With bacterial cytotoxicity and cytokine measurements, comparative genomic hybridisation, pulsed-field gel electrophoresis (PFGE), genotyping and serotyping it was found that changes in the vaccine composition can postpone the emergence of antigenic variants. It seems that the change in PFGE profiles and the loss of genetic material in the genome of B. pertussis are similar in most countries and the vaccine-induced immunity is selecting non-vaccine type strains. However, the differences in the formulation of the vaccines, the vaccination programs and in the coverage of pertussis vaccination have affected the speed and timing of these changes.
Resumo:
Pertussis or whooping cough is a highly contagious vaccine-preventable disease of the human respiratory tract caused by the Bordetella pertussis bacteria. In Finland, pertussis vaccinations were started in 1952 leading to a dramatic decrease in the morbidity and mortality. In the late 1990s, the incidence of pertussis increased despite the high vaccination coverage. Strain variation has been connected to the re-emergence of pertussis in countries with long history of pertussis vaccination. In 2005, the pertussis vaccine and the vaccination schedule were changed in Finland. The molecular epidemiology and the strain variation of the B. pertussis isolates were examined in Finland and in countries with similar (France) and different (Sweden) vaccination history. Continuous evolution of the B. pertussis population in Finland was observed since the 1950s, and the recently circulating isolates were antigenically different from the vaccine strains. Comparison of the circulating isolates from Finland, France and Sweden did not refer to significant differences. Certain type of strains noticed in France already in 1994 mainly caused the recent epidemics in Sweden (1999) and in Finland (2003-4). On several occasions, a new type of strains first appeared in Sweden and some years later in Finland. The B. pertussis isolates from the infants were shown to be similar to those from the other age groups. It is suggested that the strains originate from the same reservoir among adolescents and adults. The strain variation does not seem to have a major effect on the morbidity among recently vaccinated individuals, but it might play a role among those who are in the waning phase of immunity. The incidence of pertussis in Finland has remained low since the change of the vaccination programme. This might be related to the epidemic nature of pertussis and the near future will show the real effectiveness of the new vaccination programme. At present, many infants are infected because they are too young to be immunised with the current schedule. New strategies or vaccines are needed to protect those who are the most vulnerable.
Resumo:
Pertussis or whooping cough is a human respiratory tract infection and a vaccine-preventable disease that is caused by Bordetella pertussis bacteria. Pertussis vaccination has been part of the Finnish national vaccine program since 1952. Despite extensive vaccinations, the incidence of pertussis has increased in many countries during the last decades. Large epidemics have been observed also in countries with high vaccine coverage. Inter-individual variation in immune responses is always encountered after vaccination. Low vaccine responses may cause vulnerability to pertussis even straight after vaccination. Reasons for low responses are not fully understood. The innate immune system is responsible for the initial recognition of pathogens and vaccine antigens. The role of innate immunity on pertussis immunity has not been thoroughly investigated. Mannose-binding lectin (MBL) and toll-like receptor 4 (TLR4) are important molecules of the innate immune system and in the recognition of pathogens. Cytokines form a signaling network that have a notable role in immune responses after infections as well as after vaccinations. Single nucleotide polymorphism (SNP) is common in genes encoding these molecules and the polymorphisms have been reported to affect vaccine response after viral and bacterial vaccines. This study investigated the gene polymorphisms of MBL2, TLR4 and interleukin (IL)-10 promoter and their association with vaccine responses after acellular pertussis (aP) vaccination in Finnish adolescents and infants. Cell-mediated immune responses were investigated ten years after the previous pertussis vaccinations in young adults. In addition, the role of MBL deficiency in pertussis infection susceptibility was evaluated. The results of this study show that subjects with TLR4 polymorphism had lower antibody production and persistence after aP vaccination compared with normal allele. A specific SNP in the TLR4 gene was associated with decreased antibody responses and persistence in adolescents after aP booster vaccination. Cell-mediated immune responses were partly detected ten years after the previous vaccination; booster vaccine clearly enhanced the responses. In addition, subjects with IL-10 polymorphism had altered cell-mediated immune responses. MBL deficiency was found to be more frequent in pertussis patients than healthy controls but the polymorphism of MBL2 was not associated with antibody responses after acellular pertussis vaccination. The novel finding of this study was that genetic variation in the innate immune system seems to play a role in altered pertussis vaccine responses as well as in pertussis infection. These new findings enlighten the mechanisms behind the low responses after pertussis vaccination and help to predict risk factors related to this phenomenon.