41 resultados para compression functions

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Sian kasvuominaisuuksien perinnölliset tunnusluvut arvioituna kolmannen asteen polynomifunktion avulla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yrityksen sisäisten rajapintojen tunteminen mahdollistaa tiedonvaihdon hallinnan läpi organisaation. Idean muokkaaminen kannattavaksi innovaatioksi edellyttää organisaation eri osien läpi kulkevaa saumatonta prosessiketjua sekä tietovirtaa. Tutkielman tavoitteena oli mallintaa organisaation kahden toiminnallisesti erilaisen osan välinen tiedon vaihto. Tiedon vaihto kuvattiin rajapintana, tietoliittymänä. Kolmiulotteinen organisaatiomalli muodosti tutkimuksen pääteorian. Se kytkettiin yrityksen tuotanto- ja myyntiosiin, kuten myös BestServ-projektin kehittämään uuteen palvelujen kehittämisen prosessiin. Uutta palvelujen kehittämisen prosessia laajennettiin ISO/IEC 15288 standardin kuvaamalla prosessimallilla. Yritysarkkitehtuurikehikoita käytettiin mallintamisen perustana. Tietoliittymä nimenä kuvastaa näkemystä siitä, että tieto [tietämys] on olemukseltaan yksilöiden tai ryhmien välistä. Mallinnusmenetelmät eivät kuitenkaan vielä mahdollista tietoon [tietämykseen] liittyvien kaikkien ominaisuuksien mallintamista. Tietoliittymän malli koostuu kolmesta osasta, joista kaksi esitetään graafisessa muodossa ja yksi taulukkona. Mallia voidaan käyttää itsenäisesti tai osana yritysarkkitehtuuria. Teollisessa palveluliiketoiminnassa sekä tietoliittymän mallinnusmenetelmä että sillä luotu malli voivat auttaa konepajateollisuuden yritystä ymmärtämään yrityksen kehittämistarpeet ja -kohteet, kun se haluaa palvelujen tuottamisella suuremman roolin asiakasyrityksen liiketoiminnassa. Tietoliittymän mallia voidaan käyttää apuna organisaation tietovarannon ja tietämyksen mallintamisessa sekä hallinnassa ja näin pyrkiä yhdistämään ne yrityksen strategiaa palvelevaksi kokonaisuudeksi. Tietoliittymän mallinnus tarjoaa tietojohtamisen kauppatieteelliselle tutkimukselle menetelmällisyyden tutkia innovaatioiden hallintaa sekä organisaation uudistumiskykyä. Kumpikin tutkimusalue tarvitsevat tarkempaa tietoa ja mahdollisuuksia hallita tietovirtoja, tiedon vaihtoa sekä organisaation tietovarannon käyttöä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teollisuuden palveluiden on huomattu olevan potentiaalinen lisätulojen lähde. Teollisuuden palveluiden dynaamisessa maailmassa räätälöinti ja kyky toimia nopeasti ovat kriittisiä asiakastyytyväisyyden ja kilpailuedun luomisprosessin osia. Toimitusketjussa käytetyn ajan lyhentämisellä voidaan saavuttaa sekä paremmat vasteajat, että alhaisemmat kokonaiskustannukset. Tutkielman tavoitteena on kuvata teollisuuden palveluiden dynaamista ympäristöä: asiakastarvetta, sekä mahdollisuuksia kaventaa pyydetyn ja saavutetun toimitusajan välistä eroa. Tämä toteutetaan pääosin strategisen toimitusajan hallinnan keinoin. Langattomien tietoliikenneverkkojen operaattorit haluavat vähentää ydinosaamiseensa kuulumatomiin toimintoihin, kuten ylläpitoon sitoutuneita pääomia. Tutkielman case osiossa varaosapalvelujen toimitusketjun kysyntä-, materiaali- ja informaatiovirtoja analysoidaan niin kvalitatiivisten haastatteluiden, sisäisten dokumenttien, kuin kvantitatiivisten tilastollisten menetelmienkin avulla. Löydöksiä peilataan vallitsevaa toimitusketjun ja ajanhallinnan paradigmaa vasten. Tulokset osoittavat, että vahvan palvelukulttuurin omaksuminen ja kokonaisvaltainen toimitusketjun tehokkuuden mittaaminen ovat ajanhallinnan lähtökohtia teollisuuden palveluissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaatimus kuvatiedon tiivistämisestä on tullut entistä ilmeisemmäksi viimeisen kymmenen vuoden aikana kuvatietoon perustuvien sovellutusten myötä. Nykyisin kiinnitetään erityistä huomiota spektrikuviin, joiden tallettaminen ja siirto vaativat runsaasti levytilaa ja kaistaa. Aallokemuunnos on osoittautunut hyväksi ratkaisuksi häviöllisessä tiedontiivistämisessä. Sen toteutus alikaistakoodauksessa perustuu aallokesuodattimiin ja ongelmana on sopivan aallokesuodattimen valinta erilaisille tiivistettäville kuville. Tässä työssä esitetään katsaus tiivistysmenetelmiin, jotka perustuvat aallokemuunnokseen. Ortogonaalisten suodattimien määritys parametrisoimalla on työn painopisteenä. Työssä todetaan myös kahden erilaisen lähestymistavan samanlaisuus algebrallisten yhtälöiden avulla. Kokeellinen osa sisältää joukon testejä, joilla perustellaan parametrisoinnin tarvetta. Erilaisille kuville tarvitaan erilaisia suodattimia sekä erilaiset tiivistyskertoimet saavutetaan eri suodattimilla. Lopuksi toteutetaan spektrikuvien tiivistys aallokemuunnoksen avulla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to present a new approach to the lossy compression of multispectral images. Proposed algorithm is based on combination of quantization and clustering. Clustering was investigated for compression of the spatial dimension and the vector quantization was applied for spectral dimension compression. Presenting algo¬rithms proposes to compress multispectral images in two stages. During the first stage we define the classes' etalons, another words to each uniform areas are located inside the image the number of class is given. And if there are the pixels are not yet assigned to some of the clusters then it doing during the second; pass and assign to the closest eta¬lons. Finally a compressed image is represented with a flat index image pointing to a codebook with etalons. The decompression stage is instant too. The proposed method described in this paper has been tested on different satellite multispectral images from different resources. The numerical results and illustrative examples of the method are represented too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Main purpose of this thesis is to introduce a new lossless compression algorithm for multispectral images. Proposed algorithm is based on reducing the band ordering problem to the problem of finding a minimum spanning tree in a weighted directed graph, where set of the graph vertices corresponds to multispectral image bands and the arcs’ weights have been computed using a newly invented adaptive linear prediction model. The adaptive prediction model is an extended unification of 2–and 4–neighbour pixel context linear prediction schemes. The algorithm provides individual prediction of each image band using the optimal prediction scheme, defined by the adaptive prediction model and the optimal predicting band suggested by minimum spanning tree. Its efficiency has been compared with respect to the best lossless compression algorithms for multispectral images. Three recently invented algorithms have been considered. Numerical results produced by these algorithms allow concluding that adaptive prediction based algorithm is the best one for lossless compression of multispectral images. Real multispectral data captured from an airplane have been used for the testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis studies role based access control and its suitability in the enterprise environment. The aim is to research how extensively role based access control can be implemented in the case organization and how it support organization’s business and IT functions. This study points out the enterprise’s needs for access control, factors of access control in the enterprise environment and requirements for implementation and the benefits and challenges it brings along. To find the scope how extensively role based access control can be implemented into the case organization, firstly is examined the actual state of access control. Secondly is defined a rudimentary desired state (how things should be) and thirdly completed it by using the results of the implementation of role based access control application. The study results the role model for case organization unit, and the building blocks and the framework for the organization wide implementation. Ultimate value for organization is delivered by facilitating the normal operations of the organization whilst protecting its information assets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.