8 resultados para chemical products
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The study evaluates the potential application of chemical substances, obtained from biogas plants` by-products. Through the anaerobic digestion process with biogas the large amount of digestate is produced. This digestate mainly consists on the organic matter with the high concentration of nutrients such as nitrogen and phosphorus. During ammonia stripping and phosphorus precipitation the products- ammonia water, ammonium sulfate, ammonium nitrate, ferrous phosphate, aluminum phosphate, calcium phosphate and struvite can be recovered. These chemicals have potential application in different industrial sectors. According to Finnish market and chemicals properties, the most perspective industrial applications were determined. Based on the data, obtained through the literature review and market study, the ammonia water was recognized as a most perspective recovered substances. According to interview provided among Finnish companies, ammonia water is used for flue gas treatment in SNCR technology. This application has a large scale in the framework of Finnish industrial sectors. As well nitrogen with phosphorous can be used as a source of nutrients in the biological wastewater treatment plants of paper mills.
Resumo:
Suolahappo kuuluu peruskemianteollisuuden tuotteisiin ja on monen eri kemianteollisuuden tuotteen raaka-aine, jota ilman tuotantoprosessi keskeytyy. Suolahapontuottajia on vain muutama Suomessa ja näiden tuottajien varassa toimii lukuisia jatkojalostusteollisuuslaitoksia. Työssä lähdettiin kehittämään suolahapontoimitusvarmuutta logistiikan keinoin. Toimitusvarmuutta haluttiin kehittää sesonkivaihteluiden ja tuotantokatkosten aikana. Työssä etsitään sopiva sesonkivarastointikapasiteetti ja varmuusvarastotaso sekä järkevä sijainti varastolle. Varastointia kehitetään kuljetukset ja tuotannon luonne huomioiden. Työn alussa esitellään yritys ja tuotantoprosessi. Tämän jälkeen analysoidaan kysyntätietoja ja kasataan ongelmat toimitusvarmuudessa. Näiden pohjalta lähdetään kehittämään teoriapohjaisia ratkaisuvaihtoehtoja, jonka jälkeen ne sovelletaan yritykselle sopivaan muotoon. Työn tuloksena saatiin esitys varastointitarpeesta sekä siitä aiheutuvista kustannuksista. Työssäesitetään myös järkevä varaston sijainti ja soveltuva kuljetuskäytäntö tähän varastoon.
Resumo:
Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.
Resumo:
The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).
Resumo:
The correct utilization of non-wood raw material allows reducing tree cutting and reduces emissions of carbon dioxide from burning of non-wood plants on farmers fields. Also it allows increasing economical situation in regions that non-wood plants are grown and where they are converted into pulp and paper. Also it gives positive effect on population pressure of work by addition of working place. In the literature survey included an overview of the historical meaning of non-wood pulp on developing paper production and structure of non-wood pulps. Moreover, anatomical and chemical composition of straw, reed and bamboo were studied more detailed. Also, an overview of the utilization of non-wood pulp in papermaking was made. Especially tissue, tree-free and release papers were reviewed. In the experimental part the goal was to investigate suitability of non-wood pulp like wheat straw pulp and bamboo pulp for different fiber products. Finally release and tree-free paper products were selected for experimental studies. It was discovered that wheat straw, especially screened wheat straw, showed good results for release paper. Also utilization of wheat straw and bamboo pulp in tree-free paper showed good results and suitability of these non-wood pulps for tree-free paper production. Also it was noticed that addition of wheat straw pulp gave positive effect on initial wet strength for release and tree-free paper.
Resumo:
Hen eggs and oats (Avena Sativa) are important materials for the food industry. Today, instead of merely satisfying the feeling of hunger, consumers are asking for healthier, biologically active and environmentally friendly products. The growing awareness of consumers’ increasing demands presents a great challenge to the food industry to develop more sustainable products and utilise modern and effective techniques. The modification of yolk fatty acid composition by means of feed supplements is well understood. Egg yolk phospholipids are polar lipids and are used in several applications including food, cosmetics, pharmaceuticals, and special nutrients. Egg yolk phospholipids are excellent emulsifiers, typically sold as mixtures of phospholipids, triacylglycerols, and cholesterol. However, highly purified and characterised phospholipids are needed in several sophisticated applications. Industrial fractionation of phospholipids is usually based on organic solvents. With these fractionation techniques, some harmful residues of organic solvents may cause problems in further processing. The objective of the present study was to investigate the methods to improve the functional properties of eggs, to develop techniques to isolate the fractions responsible for the specific functional properties of egg yolk lipids, and to apply the developed techniques to plant-based materials, too. Fractionation techniques based on supercritical fluids were utilised for the separation of the lipid fractions of eggs and oats. The chemical and functional characterisation of the fractions were performed, and the produced oat polar lipid fractions were tested as protective barrier in encapsulation processes. Modifying the fatty acid compositions of egg yolks with different types of oil supplements in feed had no affect on their functional or sensory properties. Based on the results of functional and sensory analysis, it is evident that eggs with modified fatty acid compositions are usable in several industrial applications. These applications include liquid egg yolk products used in mayonnaise and salad dressings. Egg yolk powders were utilised in different kinds of fractionation processes. The precipitation method developed in this study resembles the supercritical anti-solvent method, which is typically used in the pharmaceutical industry. With pilot scale supercritical fluid processes, non-polar lipids and polar lipids were successfully separated from commercially produced egg yolk powder and oat flakes. The egg and oat-based polar lipid fractions showed high purities, and the corresponding delipidated fractions produced using supercritical techniques offer interesting starting materials for the further production of bioactive compounds. The oat polar lipid fraction contained especially digalactosyadiacylglycerol, which was shown to have valuable functional properties in the encapsulation of probiotics.
Resumo:
Tämän kandidaatintyön tarkoituksena oli tutkia märkähapetusprosessia jätevesien käsittely-menetelmänä ja mahdollisena menetelmänä kemikaalien tuottamiseksi jätevesistä. Erityishuomio on kiinnitetty paperiteollisuudessa syntyviin jätevesiin. Teoriaosassa käsitellään vesikiertoja paperitehtaassa, paperitehtaalla syntyvän jäteveden ominaisuuksia sekä itse märkähapetusprosessia. Märkähapetusprosessissa perehdytään tavalliseen happea käyttävään märkähapetukseen sekä vetyperoksidia käyttävään menetelmään sekä näissä prosesseissa syntyviin väli- ja lopputuotteisiin. Märkähapetus (WO) on terminen hapetusmenetelmä, jolla voidaan käsitellä jätevesiä, jotka ovat liian konsentroituja biologisiin käsittelyihin tai jotka ovat huonosti biohajoavia. Märkähapetuksen tarkoituksena on parantaa molekulaarisen hapen ja orgaanisen aineen välistä kontaktia, jolloin orgaaninen aines pilkkoutuu muodostaen pääasiassa karboksyylihappoja, aldehydejä, hiilidioksidia ja vettä. Märkähapetuksessa hapettavana kaasuna voidaan käyttää joko puhdasta happea tai ilmaa. Vetyperoksidia käyttävässä märkähapetuksessa (WPO) hapettava kaasu on korvattu nestemäisellä vetyperoksidilla. Kokeellisessa osassa tutkittiin orgaanisen aineksen hapetusta käyttäen Fentonin reagenssia, jolloin katalyyttina reaktiossa toimii rautaionit (Fe2+ ja Fe3+) ja hapettimena vetyperoksidi. Hapetettavana jätevetenä käytettiin paperitehtaan hiomolta saatua kiertovettä, TMP-vettä. Hapetuskokeita tehtiin eri vetyperoksidin annoksilla ja katalyytin määrillä eri lämpötiloissa. Hapetuksen jälkeen näytteistä mitattiin kemiallinen hapenkulutus (COD), orgaanisen hiilen kokonaismäärä (TOC) sekä pH. Lisäksi näytteistä määritettiin nestekromatografilla (HPLC) tyypillisten välituotteiden, kuten oksaalihapon, muurahaishapon ja etikkahapon, määrät. Tehdyissä kokeissa COD-arvoja saatiin pienennettyä 50-88 % siten, että suodatetuissa näytteissä muutos oli suurempi kuin suodattamattomissa näytteissä. Lisäksi TOC-arvot laskivat 28-58 %. Tehdyissä kokeissa saatiin myös tuotettua välituotteina karboksyylihappoja, joista etikkahappoa ja oksaalihappoa tuotettiin suurimmat määrät. Myös muurahaishappoa ja meripihkahappoa saatiin tuotettua.
Resumo:
In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.