34 resultados para cartographic visualization methods
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The visualization of measurement data is important in the fields of engineering for research analysis and presentation purposes. A suitable visualization method for scientific visualization is needed when handling measurement data. Visualization methods and techniques will be presented throughout this work. They are the bases of scientific visualization from the abstract visualization process to the applied techniques suited for each situation. This work also proposes a visualization tool using the MATLAB® software. The tool was designed as general as possible to encompass the most needs in terms of measurement data visualization. It offers possibilities for both static and dynamic visualization of the data.
Resumo:
This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.
Resumo:
The amount of biological data has grown exponentially in recent decades. Modern biotechnologies, such as microarrays and next-generation sequencing, are capable to produce massive amounts of biomedical data in a single experiment. As the amount of the data is rapidly growing there is an urgent need for reliable computational methods for analyzing and visualizing it. This thesis addresses this need by studying how to efficiently and reliably analyze and visualize high-dimensional data, especially that obtained from gene expression microarray experiments. First, we will study the ways to improve the quality of microarray data by replacing (imputing) the missing data entries with the estimated values for these entries. Missing value imputation is a method which is commonly used to make the original incomplete data complete, thus making it easier to be analyzed with statistical and computational methods. Our novel approach was to use curated external biological information as a guide for the missing value imputation. Secondly, we studied the effect of missing value imputation on the downstream data analysis methods like clustering. We compared multiple recent imputation algorithms against 8 publicly available microarray data sets. It was observed that the missing value imputation indeed is a rational way to improve the quality of biological data. The research revealed differences between the clustering results obtained with different imputation methods. On most data sets, the simple and fast k-NN imputation was good enough, but there were also needs for more advanced imputation methods, such as Bayesian Principal Component Algorithm (BPCA). Finally, we studied the visualization of biological network data. Biological interaction networks are examples of the outcome of multiple biological experiments such as using the gene microarray techniques. Such networks are typically very large and highly connected, thus there is a need for fast algorithms for producing visually pleasant layouts. A computationally efficient way to produce layouts of large biological interaction networks was developed. The algorithm uses multilevel optimization within the regular force directed graph layout algorithm.
Resumo:
The recent rapid development of biotechnological approaches has enabled the production of large whole genome level biological data sets. In order to handle thesedata sets, reliable and efficient automated tools and methods for data processingand result interpretation are required. Bioinformatics, as the field of studying andprocessing biological data, tries to answer this need by combining methods and approaches across computer science, statistics, mathematics and engineering to studyand process biological data. The need is also increasing for tools that can be used by the biological researchers themselves who may not have a strong statistical or computational background, which requires creating tools and pipelines with intuitive user interfaces, robust analysis workflows and strong emphasis on result reportingand visualization. Within this thesis, several data analysis tools and methods have been developed for analyzing high-throughput biological data sets. These approaches, coveringseveral aspects of high-throughput data analysis, are specifically aimed for gene expression and genotyping data although in principle they are suitable for analyzing other data types as well. Coherent handling of the data across the various data analysis steps is highly important in order to ensure robust and reliable results. Thus,robust data analysis workflows are also described, putting the developed tools andmethods into a wider context. The choice of the correct analysis method may also depend on the properties of the specific data setandthereforeguidelinesforchoosing an optimal method are given. The data analysis tools, methods and workflows developed within this thesis have been applied to several research studies, of which two representative examplesare included in the thesis. The first study focuses on spermatogenesis in murinetestis and the second one examines cell lineage specification in mouse embryonicstem cells.
Resumo:
Tiivistelmä: Harvennusmenetelmien vertailu ojitetun turvemaan männikössä. Simulointitutkimus
Resumo:
Summary
Resumo:
Selostus: Pohjois-Euroopan silikaattisten kalkitusaineiden reaktiivisuus astiakoemenetelmällä ja kahdella pH-staattisella menetelmällä arvioituna