20 resultados para baroclinic flows
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Artikkeli on alunperin julkaistu teoksessa: The informational city (1989) / Manuel Castells
Resumo:
This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous driving of the horizontal plate at the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height and rotational speed of the shearing plate are measured. Moreover, local stress fluctuations are measured in a medium made of steel spheres 2 and 3 mm in diameter. Both monodisperse packing and bidisperse packing are investigated to reveal the influence of size diversity in intermittent features of granular materials. Experiments are conducted in an annulus that can contain up to 15 kg of spherical steel balls. The shearing granular medium takes place via the rotation of the upper plate which compresses the material loaded inside the annulus. Fluctuations of compressive force are locally measured at the bottom of the annulus using a piezoelectric sensor. Rapid shear flow experiments are pursued at different compressive forces and shear rates and the sensitivity of fluctuations are then investigated by different means through monodisperse and bidisperse packings. Another important feature of rapid granular shear flows is the formation of ordered structures upon shearing. It requires a certain range for the amount of granular material (uniform size distribution) loaded in the system in order to obtain stable flows. This is studied more deeply in this thesis. The results of the current work bring some new insights into deformation dynamics and intermittency in rapid granular shear flows. The experimental apparatus is modified in comparison to earlier investigations. The measurements produce data for various quantities continuously sampled from the start of shearing to the end. Static failure and dynamic shearing ofa granular medium is investigated. The results of this work revealed some important features of failure dynamics and structure formation in the system. Furthermore, some computer simulations are performed in a 2D annulus to examine the nature of kinetic energy dissipation. It is found that turbulent flow models can statistically represent rapid granular flows with high accuracy. In addition to academic outcomes and scientific publications our results have a number of technological applications associated with grinding, mining and massive grain storages.
Resumo:
The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.
Resumo:
Tämän työn tavoitteena oli tutkia rakeisen materiaalin kinematiikkaa ja rakentaa koelaitteisto rakeisen materiaalin leikkausjännitysvirtauksien tutkimiseen. Kokeellisessa osassa on keskitytty sisäisiin voimaheilahteluihin ja niiden ymmärtämiseen. Teoriaosassa on käyty läpi rakeisen materiaalin yleisiä ominaisuuksia ja lisäksi on esitetty kaksi eri tapaa mallintaa fysikaalisien ominaisuuksien heilahteluja rakeisessa materiaalissa. Nämä kaksi esitettyä mallinnusmenetelmää ovat skalaarinen q-malli ja simulointi. Skalaarinen q-malli määrittelee jokaiseen yksittäiseen rakeeseen kohdistuvan jännityksen, rakeen ollessa osa 2- tai 3-dimensionaalista asetelmaa. Tämän mallin perusidea on kuvata jännityksien epähomogeenisuutta, joka johtuu rakeiden satunnaisasettelusta. Simulointimallinnus perustuu event-driven algoritmiin, missä systeemin dynamiikkaa kuvataan yksittäisillä partikkelien törmäyksillä. Törmäyksien vaiheet ratkaistiin käyttämällä liikemääräyhtälöitä ja restituution määritelmää. Teoriaosuudessa käytiin vielä pieniltä osin läpi syitä jännitysheilahteluihin ja rakeisen materiaalin lukkiintumiseen. Tutkimuslaitteistolla tutkittiin rakeisen materiaalin käyttäytymistä rengasmaisessa leikkausjännitysvirtauksessa. Tutkimusosuuden päätavoitteena oli mitata partikkelien kosketuksista ja törmäyksistä johtuvia hetkellisiä voimaheilahteluja rengastilavuuden pohjalta. Rakeisena materiaalina tutkimuksessa käytettiin teräskuulia. Jännityssignaali ajan funktiona osoittaa suurta heilahtelua, joka voi olla jopa kertalukua keskiarvosta suurempaa. Tällainen suuren amplitudin omaava heilahtelu on merkittävä haittapuoli yleisesti rakeisissa materiaaleissa käytettyjen jatkuvuusmallien kanssa. Tällainen heilahtelu tekee käytetyt jatkuvuusmallit epäpäteviksi. Yleisellä tasolla jännityksien todennäköisyysjakauma on yhtäpitävä skalaarisen q-mallin tuloksien kanssa. Molemmissa tapauksissa todennäköisyysjakaumalla on eksponentiaalinen muoto.
Resumo:
Tavoitteena diplomityössä oli kuvata projektiliiketoimintaa harjoittavan yrityksen informaatio- ja materiaalivirrat toimitusprojekteissa. Selvitys haluttiin tehdä tulevia kehitysprojekteja varten. Diplomityö toteutettiin kahessa osassa: laatimalla aiheeseen liittyvä teoriakatsaus ja kartoittamalla todellinen tilanne yrityksen sisällä.Teoriaosassa kuvattiin tarkastelualue ja projektiliiketoiminnan erityispiirteitä sekä käsiteltiin tietojärjestelmiä ja materiaalivirran hallintaan liittyviä asioita. Yrityksen informaatio- ja materiaalivirtojen nykytila kartoitettiin laatimalla vuokaaviot kolmen esimerkkituotteen toimitusprojekteista. Kaaviot laadittiin yrityksen sisäisten dokumenttien ja kvalitatiivisten haastattelujen pohjalta. Kaavioiden sisältöä täydennettiin taulukoimalla kaavioissa esiintyvien dokumettien sisältöä. Työn tuloksena muodostui kuva tiedonkäsittelyn nykytilasta myynti- ja toimitusprojekteissa, pelkistetty visio tulevaisuuden tietojärjestelmien rooleista sekä ehdotuksia tulevia kehitysprojekteja varten.
Resumo:
Tämä diplomityö tehtiin osana Componenta Cast Componentsin kolmivuotista toimitusketjujen kehitysprojektia. Työn tavoitteena oli kuvata tyypillinen yrityksen sisäinen toimitusketjuprosessi ja tehdä alustava suorituskykyanalyysi valimon ja konepajan väliseen logistiseen prosessiin liittyen. Tarkoituksena oli myös löytää kehityskohteita materiaali- ja tietovirtojen hallinnassa näiden tuotantoyksiköiden välillä. Logistiikkaan, toimitusketjujen hallintaan ja toimitusketjun suorituskyvyn mittaamiseen liittyvän kirjallisuustutkimuksen sekä käytännön perusteella valittiin sopivat analyysimenetelmät. Näitä menetelmiä hyödynnettiin tilaustoimitus – prosessin kuvaamisessa sekä suorituskyvyn analysoinnissa yrityksen sisäisessä toimitusketjussa. Luonnollisena jatkona kehitettiin ja pantiin käytäntöön toimitusketjua synkronoiva imutyyppinen tuotannon- ja materiaalinohjausmenetelmä. Diplomityöprojektin aikana kehitettiin myös apuvälineet käyttöönotetun menetelmän asianmukaista hyödyntämistä varten. Diplomityöprojektissa otettiin ensimmäiset askeleet kohti integroitua sisäistä toimitusketjua. Uuden tuotannon- ja materiaalinohjausmenetelmän standardisointi muihin menetelmiin yhdistettynä, sekä toimitusketjun avainmittarien jatkokehitys on jo alkanut. Läpimenoaikoja lyhentämällä ja synkronoidun, läpinäkyvän kysyntä-tarjontaketjun avulla integroitumisen astetta voidaan nostaa edelleen. Poikkiorganisatorinen kehitys ja johtaminen toimitusketjussa on avainedellytys menestykseen.
Resumo:
The purpose of this thesis is to study factors that explain the bilateral fiber trade flows. This is done by analyzing bilateral trade flows during 1990-2006. It will be studied also, whether there are differences between fiber types. This thesis uses a gravity model approach to study the trade flows. Gravity model is mostly used to study the aggregate data between trading countries. In this thesis the gravity model is applied to single fibers. This model is then applied to panel data set. Results from the regression show clearly that there are benefits in studying different fibers in separate. The effects differ considerably from each other. Furthermore, this thesis speaks for the existence of Linder’s effect in certain fiber types.
Resumo:
In the Thesis main focus is done on power flow development paths around the Baltic States as well as on market-based requirements for creation of the common Baltic electricity market. Current market regulations between the countries are presented; barriers for creating competitive common Baltic power market and for electricity trading with third countries are clarified; solutions are offered and corresponding road map is developed. Future power development paths around the Baltic States are analysed. For this purpose the 330 kV transmission grid of Estonia, Latvia and Lithuania is modelled in a power flow tool. Power flow calculations are carried out for winter and summer peak and off-peak load periods in 2020 with different combinations of interconnections. While carrying out power balance experiments several power flow patterns in the Baltic States are revealed. Conclusions are made about security of supply, grid congestion and transmission capacity availability for different scenarios.
Resumo:
Airlift reactors are pneumatically agitated reactors that have been widely used in chemical, petrochemical, and bioprocess industries, such as fermentation and wastewater treatment. Computational Fluid Dynamics (CFD) has become more popular approach for design, scale-up and performance evaluation of such reactors. In the present work numerical simulations for internal-loop airlift reactors were performed using the transient Eulerian model with CFD package, ANSYS Fluent 12.1. The turbulence in the liquid phase is described using κ- ε the model. Global hydrodynamic parameters like gas holdup, gas velocity and liquid velocity have been investigated for a range of superficial gas velocities, both with 2D and 3D simulations. Moreover, the study of geometry and scale influence on the reactor have been considered. The results suggest that both, geometry and scale have significant effects on the hydrodynamic parameters, which may have substantial effects on the reactor performance. Grid refinement and time-step size effect have been discussed. Numerical calculations with gas-liquid-solid three-phase flow system have been carried out to investigate the effect of solid loading, solid particle size and solid density on the hydrodynamic characteristics of internal loop airlift reactor with different superficial gas velocities. It was observed that averaged gas holdup is significantly decreased with increasing slurry concentration. Simulations show that the riser gas holdup decreases with increase in solid particle diameter. In addition, it was found that the averaged solid holdup increases in the riser section with the increase of solid density. These produced results reveal that CFD have excellent potential to simulate two-phase and three-phase flow system.
Resumo:
Objective of this thesis was to develop the exchange of information and reduce the manual work done in the supply chain. In addition, the possibility to introduce electronic information exchange was studied between suppliers and Borealis. The aim was to create an accurate picture of Borealis’ current information flows and create from the basis of it short- and long-term improvement and development proposals. In this study the company's received and send information flows were mapped by interviewing persons who were responsible for the railroad imports and by examining documents that are used in the exchange of information. The data content of the information flows were prioritized and only the most important information contents were used for further development. Literature data was acquired concerning knowledge of electronic data interchange and information management to support the decisions and proposals. Long-term development proposals were compared with each other and the best one of them was recommended for further study. The final target of the proposal is to be able to receive electronic data and create an own database where to the information is stored and where from it is possible to follow up the rail tank cars and where from the needed reports can be retrieved.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
This thesis presents a set of methods and models for estimation of iron and slag flows in the blast furnace hearth and taphole. The main focus was put on predicting taphole flow patterns and estimating the effects of various taphole conditions on the drainage behavior of the blast furnace hearth. All models were based on a general understanding of the typical tap cycle of an industrial blast furnace. Some of the models were evaluated on short-term process data from the reference furnace. A computational fluid dynamics (CFD) model was built and applied to simulate the complicated hearth flows and thus to predict the regions of the hearth exerted to erosion under various operating conditions. Key boundary variables of the CFD model were provided by a simplified drainage model based on the first principles. By examining the evolutions of liquid outflow rates measured from the furnace studied, the drainage model was improved to include the effects of taphole diameter and length. The estimated slag delays showed good agreement with the observed ones. The liquid flows in the taphole were further studied using two different models and the results of both models indicated that it is more likely that separated flow of iron and slag occurs in the taphole when the liquid outflow rates are comparable during tapping. The drainage process was simulated with an integrated model based on an overall balance analysis: The high in-furnace overpressure can compensate for the resistances induced by the liquid flows in the hearth and through the taphole. Finally, a recently developed multiphase CFD model including interfacial forces between immiscible liquids was developed and both the actual iron-slag system and a water-oil system in laboratory scale were simulated. The model was demonstrated to be a useful tool for simulating hearth flows for gaining understanding of the complex phenomena in the drainage of the blast furnace.
Resumo:
Global challenges, complexity and continuous uncertainty demand development of leadership approaches, employees and multi-organisation constellations. Current leadership theories do not sufficiently address the needs of complex business environments. First of all, before successful leadership models can be applied in practice, leadership needs to shift from the industrial age to the knowledge era. Many leadership models still view leadership solely through the perspective of linear process thinking. In addition, there is not enough knowledge or experience in applying these newer models in practice. Leadership theories continue to be based on the assumption that leaders possess or have access to all the relevant knowledge and capabilities to decide future directions without external advice. In many companies, however, the workforce consists of skilled professionals whose work and related interfaces are so challenging that the leaders cannot grasp all the linked viewpoints and cross-impacts alone. One of the main objectives of this study is to understand how to support participants in organisations and their stakeholders to, through practice-based innovation processes, confront various environments. Another aim is to find effective ways of recognising and reacting to diverse contexts, so companies and other stakeholders are better able to link to knowledge flows and shared value creation processes in advancing joint value to their customers. The main research question of this dissertation is, then, to seek understanding of how to enhance leadership in complex environments. The dissertation can, on the whole, be characterised as a qualitative multiple-case study. The research questions and objectives were investigated through six studies published in international scientific journals. The main methods applied were interviews, action research and a survey. The empirical focus was on Finnish companies, and the research questions were examined in various organisations at the top levels (leaders and managers) and bottom levels (employees) in the context of collaboration between organisations and cooperation between case companies and their client organisations. However, the emphasis of the analysis is the internal and external aspects of organisations, which are conducted in practice-based innovation processes. The results of this study suggest that the Cynefin framework, complexity leadership theory and transformational leadership represent theoretical models applicable to developing leadership through practice-based innovation. In and of themselves, they all support confronting contemporary challenges, but an implementable method for organisations may be constructed by assimilating them into practice-based innovation processes. Recognition of diverse environments, their various contexts and roles in the activities and collaboration of organisations and their interest groups is ever-more important to achieving better interaction in which a strategic or formal status may be bypassed. In innovation processes, it is not necessarily the leader who is in possession of the essential knowledge; thus, it is the role of leadership to offer methods and arenas where different actors may generate advances. Enabling and supporting continuous interaction and integrated knowledge flows is of crucial importance, to achieve emergence of innovations in the activities of organisations and various forms of collaboration. The main contribution of this dissertation relates to applying these new conceptual models in practice. Empirical evidence on the relevance of different leadership roles in practice-based innovation processes in Finnish companies is another valuable contribution. Finally, the dissertation sheds light on the significance of combining complexity science with leadership and innovation theories in research.