5 resultados para Web of things
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Manufacturing companies have passed from selling uniquely tangible products to adopting a service-oriented approach to generate steady and continuous revenue streams. Nowadays, equipment and machine manufacturers possess technologies to track and analyze product-related data for obtaining relevant information from customers’ use towards the product after it is sold. The Internet of Things on Industrial environments will allow manufacturers to leverage lifecycle product traceability for innovating towards an information-driven services approach, commonly referred as “Smart Services”, for achieving improvements in support, maintenance and usage processes. The aim of this study is to conduct a literature review and empirical analysis to present a framework that describes a customer-oriented approach for developing information-driven services leveraged by the Internet of Things in manufacturing companies. The empirical study employed tools for the assessment of customer needs for analyzing the case company in terms of information requirements and digital needs. The literature review supported the empirical analysis with a deep research on product lifecycle traceability and digitalization of product-related services within manufacturing value chains. As well as the role of simulation-based technologies on supporting the “Smart Service” development process. The results obtained from the case company analysis show that the customers mainly demand information that allow them to monitor machine conditions, machine behavior on different geographical conditions, machine-implement interactions, and resource and energy consumption. Put simply, information outputs that allow them to increase machine productivity for maximizing yields, save time and optimize resources in the most sustainable way. Based on customer needs assessment, this study presents a framework to describe the initial phases of a “Smart Service” development process, considering the requirements of Smart Engineering methodologies.
Resumo:
Tämän tutkimuksen tavoitteena oli tutkia langattomien internet palveluiden arvoverkkoa ja liiketoimintamalleja. Tutkimus oli luonteeltaan kvalitatiivinen ja siinä käytettiin strategiana konstruktiivista case-tutkimusta. Esimerkkipalveluna oli Treasure Hunters matkapuhelinpeli. Tutkimus muodostui teoreettisesta ja empiirisestä osasta. Teoriaosassa liitettiin innovaatio, liiketoimintamallit ja arvoverkko käsitteellisesti toisiinsa, sekä luotiin perusta liiketoimintamallien kehittämiselle. Empiirisessä osassa keskityttiin ensin liiketoimintamallien luomiseen kehitettyjen innovaatioiden pohjalta. Lopuksi pyrittiin määrittämään arvoverkko palvelun toteuttamiseksi. Tutkimusmenetelminä käytettiin innovaatiosessiota, haastatteluja ja lomakekyselyä. Tulosten pohjalta muodostettiin useita liiketoimintakonsepteja sekä kuvaus arvoverkon perusmallista langattomille peleille. Loppupäätelmänä todettiin että langattomat palvelut vaativat toteutuakseen useista toimijoista koostuvan arvoverkon.
Resumo:
Only recently, during the past five years, consumer electronics has been evolving rapidly. Many products have started to include “smart home” capabilities, enabling communication and interoperability of various smart devices. Even more devices and sensors can be remote controlled and monitored through cloud services. While the smart home systems have become very affordable to average consumer compared to the early solutions decades ago, there are still many issues and things that need to be fixed or improved upon: energy efficiency, connectivity with other devices and applications, security and privacy concerns, reliability, and response time. This paper focuses on designing Internet of Things (IoT) node and platform architectures that take these issues into account, notes other currently used solutions, and selects technologies in order to provide better solution. The node architecture aims for energy efficiency and modularity, while the platform architecture goals are in scalability, portability, maintainability, performance, and modularity. Moreover, the platform architecture attempts to improve user experience by providing higher reliability and lower response time compared to the alternative platforms. The architectures were developed iteratively using a development process involving research, planning, design, implementation, testing, and analysis. Additionally, they were documented using Kruchten’s 4+1 view model, which is used to describe the use cases and different views of the architectures. The node architecture consisted of energy efficient hardware, FC3180 microprocessor and CC2520 RF transceiver, modular operating system, Contiki, and a communication protocol, AllJoyn, used for providing better interoperability with other IoT devices and applications. The platform architecture provided reliable low response time control, monitoring, and initial setup capabilities by utilizing web technologies on various devices such as smart phones, tablets, and computers. Furthermore, an optional cloud service was provided in order to control devices and monitor sensors remotely by utilizing scalable high performance technologies in the backend enabling low response time and high reliability.
Resumo:
Wireless sensor networks (WSNs) are the key enablers of the internet of things (IoT) paradigm. Traditionally, sensor network research has been to be unlike the internet, motivated by power and device constraints. The IETF 6LoWPAN draft standard changes this, defining how IPv6 packets can be efficiently transmitted over IEEE 802.15.4 radio links. Due to this 6LoWPAN technology, low power, low cost micro- controllers can be connected to the internet forming what is known as the wireless embedded internet. Another IETF recommendation, CoAP allows these devices to communicate interactively over the internet. The integration of such tiny, ubiquitous electronic devices to the internet enables interesting real-time applications. This thesis work attempts to evaluate the performance of a stack consisting of CoAP and 6LoWPAN over the IEEE 802.15.4 radio link using the Contiki OS and Cooja simulator, along with the CoAP framework Californium (Cf). Ultimately, the implementation of this stack on real hardware is carried out using a raspberry pi as a border router with T-mote sky sensors as slip radios and CoAP servers relaying temperature and humidity data. The reliability of the stack was also demonstrated during scalability analysis conducted on the physical deployment. The interoperability is ensured by connecting the WSN to the global internet using different hardware platforms supported by Contiki and without the use of specialized gateways commonly found in non IP based networks. This work therefore developed and demonstrated a heterogeneous wireless sensor network stack, which is IP based and conducted performance analysis of the stack, both in terms of simulations and real hardware.
Resumo:
The increasing dependency of everyday life on mobile devices also increases the number and complexity of computing tasks to be supported by these devices. However, the inherent requirement of mobility restricts them from being resources rich both in terms of energy (battery capacity) and other computing resources such as processing capacity, memory and other resources. This thesis looks into cyber foraging technique of offloading computing tasks. Various experiments on android mobile devices are carried out to evaluate offloading benefits in terms of sustainability advantage, prolonging battery life and augmenting the performance of mobile devices. This thesis considers two scenarios of cyber foraging namely opportunistic offloading and competitive offloading. These results show that the offloading scenarios are important for both green computing and resource augmentation of mobile devices. A significant advantage in battery life gain and performance enhancement is obtained. Moreover, cyber foraging is proved to be efficient in minimizing energy consumption per computing tasks. The work is based on scavenger cyber foraging system. In addition, the work can be used as a basis for studying cyber foraging and other similar approaches such as mobile cloud/edge computing for internet of things devices and improving the user experiences of applications by minimizing latencies through the use of potential nearby surrogates.