17 resultados para Trapped Microscopic Particles
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The control of coating layer properties is becoming increasingly important as a result of an emerging demand for novel coated paper-based products and an increasing popularity of new coating application methods. The governing mechanisms of microstructure formation dynamics during consolidation and drying are nevertheless, still poorly understood. Some of the difficulties encountered by experimental methods can be overcome by the utilisation of numerical modelling and simulation-based studies of the consolidation process. The objective of this study was to improve the fundamental understanding of pigment coating consolidation and structure formation mechanisms taking place on the microscopic level. Furthermore, it is aimed to relate the impact of process and suspension properties to the microstructure of the coating layer. A mathematical model based on a modified Stokesian dynamics particle simulation technique was developed and applied in several studies of consolidation-related phenomena. The model includes particle-particle and particle-boundary hydrodynamics, colloidal interactions, Born repulsion, and a steric repulsion model. The Brownian motion and a free surface model were incorporated to enable the specific investigation of consolidation and drying. Filter cake stability was simulated in various particle systems, and subjected to a range of base substrate absorption rates and system temperatures. The stability of the filter cake was primarily affected by the absorption rate and size of particles. Temperature was also shown to have an influence. The consolidation of polydisperse systems, with varying wet coating thicknesses, was studied using imposed pilot trial and model-based drying conditions. The results show that drying methods have a clear influence on the microstructure development, on small particle distributions in the coating layer and also on the mobility of particles during consolidation. It is concluded that colloidal properties can significantly impact coating layer shrinkage as well as the internal solids concentration profile. Visualisations of particle system development in time and comparison of systems at different conditions are useful in illustrating coating layer structure formation mechanisms. The results aid in understanding the underlying mechanisms of pigment coating layer consolidation. Guidance is given regarding the relationship between coating process conditions and internal coating slurry properties and their effects on the microstructure of the coating.
Resumo:
Combustion of wood is increasing because of the needs of decreasing the emissions of carbon dioxide and the amount of waste going to landfills. Wood based fuels are often scattered on a large area. The transport distances should be short enough to prevent too high costs, and so the size of heating and power plants using wood fuels is often rather small. Combustion technologies of small-size units have to be developed to reach efficient and environmentally friendly energy production. Furnaces that use different packed bed combustion or gasification techniques areoften most economic in small-scale energy production. Ignition front propagation rate affects the stability, heat release rate and emissions of packed bed combustion. Ignition front propagation against airflow in packed beds of wood fuels has been studied. The research has been carried out mainly experimentally. Theoretical aspects have been considered to draw conclusions about the experimental results. The effects of airflow rate, moisture content of the fuel, size, shape and density of particles, and porosity of the bed on the propagation rate of the ignition front have been studied. The experiments were carried out in a pot furnace. The fuels used in the experiments were mainly real wood fuels that are often burned in the production of energy. The fuel types were thin wood chips, saw dust, shavings, wood chips, and pellets with different sizes. Also a few mixturesof the above were tested. Increase in the moisture content of the fuel decreases the propagation rates of the ignition front and makes the range of possible airflow rates narrower because of the energy needed for the evaporation of water and the dilution of volatile gases due to evaporated steam. Increase in the airflow rate increases the ignition rate until a maximum rate of propagation is reached after which it decreases. The maximum flame propagation rate is not always reached in stoichiometric combustion conditions. Increase in particle size and density transfers the optimum airflow rate towards fuel lean conditions. Mixing of small and large particles is often advantageous, because small particles make itpossible to reach the maximum ignition rate in fuel rich conditions, and large particles widen the range of possible airflow rates. A correlation was found forthe maximum rate of ignition front propagation in different wood fuels. According to the correlation, the maximum ignition mass flux is increased when the sphericity of the particles and the porosity of the bed are increased and the moisture content of the fuel is decreased. Another fit was found between sphericity and porosity. Increase in sphericity decreases the porosity of the bed. The reasons of the observed results are discussed.
Resumo:
Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
Conservation laws in physics are numerical invariants of the dynamics of a system. In cellular automata (CA), a similar concept has already been defined and studied. To each local pattern of cell states a real value is associated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.The overall “energy” of a configuration is simply the sum of the energy of the local patterns appearing on different positions in the configuration. We have a conservation law for that energy, if the total energy of each configuration remains constant during the evolution of the CA. For a given conservation law, it is desirable to find microscopic explanations for the dynamics of the conserved energy in terms of flows of energy from one region toward another. Often, it happens that the energy values are from non-negative integers, and are interpreted as the number of “particles” distributed on a configuration. In such cases, it is conjectured that one can always provide a microscopic explanation for the conservation laws by prescribing rules for the local movement of the particles. The onedimensional case has already been solved by Fuk´s and Pivato. We extend this to two-dimensional cellular automata with radius-0,5 neighborhood on the square lattice. We then consider conservation laws in which the energy values are chosen from a commutative group or semigroup. In this case, the class of all conservation laws for a CA form a partially ordered hierarchy. We study the structure of this hierarchy and prove some basic facts about it. Although the local properties of this hierarchy (at least in the group-valued case) are tractable, its global properties turn out to be algorithmically inaccessible. In particular, we prove that it is undecidable whether this hierarchy is trivial (i.e., if the CA has any non-trivial conservation law at all) or unbounded. We point out some interconnections between the structure of this hierarchy and the dynamical properties of the CA. We show that positively expansive CA do not have non-trivial conservation laws. We also investigate a curious relationship between conservation laws and invariant Gibbs measures in reversible and surjective CA. Gibbs measures are known to coincide with the equilibrium states of a lattice system defined in terms of a Hamiltonian. For reversible cellular automata, each conserved quantity may play the role of a Hamiltonian, and provides a Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity) that is invariant. Conversely, every invariant Gibbs measure provides a conservation law for the CA. For surjective CA, the former statement also follows (in a slightly different form) from the variational characterization of the Gibbs measures. For one-dimensional surjective CA, we show that each invariant Gibbs measure provides a conservation law. We also prove that surjective CA almost surely preserve the average information content per cell with respect to any probability measure.
Resumo:
The amphiphilic nature of metal extractants causes the formation of micelles and other microscopic aggregates when in contact with water and an organic diluent. These phenomena and their effects on metal extraction were studied using carboxylic acid (Versatic 10) and organophosphorus acid (Cyanex 272) based extractants. Special emphasis was laid on the study of phase behaviour in a pre neutralisation stage when the extractant is transformed to a sodium or ammonium salt form. The pre neutralised extractants were used to extract nickel and to separate cobalt and nickel. Phase diagrams corresponding to the pre neutralisation stage in a metal extraction process were determined. The maximal solubilisation of the components in the system water(NH3)/extractant/isooctane takes place when the molar ratio between the ammonia salt form and the free form of the extractant is 0.5 for the carboxylic acid and 1 for the organophosphorus acid extractant. These values correspond to the complex stoichiometry of NH4A•HA and NIi4A, respectively. When such a solution is contacted with water a microemulsion is formed. If the aqueous phase contains also metal ions (e.g. Ni²+), complexation will take place on the microscopic interface of the micellar aggregates. Experimental evidence showing that the initial stage of nickel extraction with pre neutralised Versatic 10 is a fast pseudohomogeneous reaction was obtained. About 90% of the metal were extracted in the first 15 s after the initial contact. For nickel extraction with pre neutralised Versatic 10 it was found that the highest metal loading and the lowest residual ammonia and water contents in the organic phase are achieved when the feeds are balanced so that the stoichiometry is 2NH4+(org) = Nit2+(aq). In the case of Co/Ni separation using pre neutralised Cyanex 272 the highest separation is achieved when the Co/extractant molar ratio in the feeds is 1 : 4 and at the same time the optimal degree of neutralisation of the Cyanex 272 is about 50%. The adsorption of the extractants on solid surfaces may cause accumulation of solid fine particles at the interface between the aqueous and organic phases in metal extraction processes. Copper extraction processes are known to suffer of this problem. Experiments were carried out using model silica and mica particles. It was found that high copper loading, aromacity of the diluent, modification agents and the presence of aqueous phase decrease the adsorption of the hydroxyoxime on silica surfaces.
Resumo:
Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.
Resumo:
En djupare förståelse för växelverkan mellan partiklar i suspensioner är av betydelse för utvecklingen av en mängd olika industriella produkter och processer. Till exempel kan nämnas pigmentbaserade färger och bestrykning av papper. Genom att öka kontrollbarheten kan dessa lättare optimeras för att uppnå förbättrade produktegenskaper och/eller sänkta produktionskostnader. Av stor betydelse är även en förbättrad möjlighet att minska produktens miljöpåverkan. I avhandlingen studerades jonstyrkan och jonspecificiteten inverkan i olika akvatiska suspensioner innehållande olika elektrolyter. De partiklar som avhandlingen omfattade var metalloxider, leror samt latex. Jonstyrkan studerades från låga (c <10-3M) till och med höga (c> 10-1M) elektrolytkoncentrationer. Vid koncentrationer under 0.1 M var partikelladdningen styrd av pH och jonstyrkan. Vid högre elektrolytkoncentrationer påverkade även jonspecificiteten partikelladdningen. Jonspecificiteten arrangerades i fenomenologiska serier funna i litteraturen samt med Born modellen definierad i termodynamiken. Överraskande höga absoluta zeta-potential värden erhölls vid höga elektrolytkoncentrationer vilket visar att den elektrostatiska repulsionen har betydelse även vid dessa förhållanden. Vidare studerades titanoxidsuspensioners egenskaper i akvatiska, icke-akvatiska och blandade lösningssystem under varierande koncentration av oxal- och fosfatsyra. Vid lågt vatteninnehåll studerades även suspensioner med svavelsyra. Konduktiviteten i suspensioner med lågt vatteninnehåll ökade med tillsatt oxal- eller fosforsyra vilket är en omvänd effekt jämfört med svavelsyra eller akvatiska suspensioner. Den omvända effekten skiftade gradvis tillbaka med ökad vatteninnehåll. En analys av suspensionernas adsorption i höga etanolkoncentrationer gjordes med konduktiviteten, pH och zeta-potentialen. Viskositet studerades och applicerades framgångsrikt i viskositet/ytladdningsmodeller utvecklade för akvatiska suspensioner.
Resumo:
This thesis presents an experimental study and numerical study, based on the discrete element method (DEM), of bell-less charging in the blast furnace. The numerical models are based on the microscopic interaction between the particles in the blast furnace charging process. The emphasis is put on model validation, investigating several phenomena in the charging process, and on finding factors that influence the results. The study considers and simulates size segregation in the hopper discharging process, particle flow and behavior on the chute, which is the key equipment in the charging system, using mono-size spherical particles, multi-size spheres and nonspherical particles. The behavior of the particles at the burden surface and pellet percolation into a coke layer is also studied. Small-scale experiments are used to validate the DEM models.
Resumo:
Diplomityön tarkoituksena oli tutkia nikkelin sulfidisaostuksessa syntyvien kiteiden morfologiaa ja siihen vaikuttavia parametreja. Syntyvien kiteiden kasvua ja morfologiaa tutkittiin kiteen muodostumisen ja kasvun teorioiden avulla. Saostuksen olosuhteet, kuten lämpötila, paine ja pH vaikuttavat muodostuvien kiteiden morfologiaan. Muilla parametreilla, kuten liuoksen ylikylläisyydellä, epäpuhtauksilla, lisäaineilla, sekoituksella ja reaktioajalla on myös suuri merkitys. Kokeiden avulla haluttiin liuoskoostumuksen, saostusolosuhteiden ja muiden komponenttien vaikutusta nikkelisulfidikiteiden morfologiaan. Kokeissa käytettiin kahta eri sulfidilähdettä: natriumvetysulfidia ja rikkivetyä. Puolipanoskokeissa nikkelipitoisuus oli 1,5 g/l, paine 101,3 kPa ja sekoitusnopeus 650 rpm. Saostuskokeet tehtiin natriumsulfaatti- 5 g/l ja ammoniumsulfaattiliuoksissa 300 g/l. Saostuskokeissa muuttujia olivat saostimen konsentraatio ja määrä, rauta- ja magne-siumepäpuhtaudet, lämpötila ja lisäaineet. Diplomityön kokeellisessa osassa morfologiaa tutkittiin suoraan valomikroskoopin ja pyyhkäisyelektronimikroskoopin (SEM) avulla. Morfologiaa tutkittiin myös epäsuorasti laskeutumisnopeuden, keskimääräisen partikkelikoon, ja ominaispinta-alamittausten avulla. Saostimen pitoisuuden vaikutukset partikkelimuotoon olivat pieniä, mutta vaikutukset ominaispinta-alaan ja partikkelikokoon olivat suuria. Natriumlauryylisul-faatti ja EDTA ohjasivat partikkelien rakennetta levymäisemmäksi, joka johti hitaaseen laskeutumisnopeuteen. Polyakryylihappo lisäaineena muuttaa partikkelien morfologiaa kuutiomaisemmaksi. Flokkulanttien ja raudan morfologiset vaikutukset olivat pieniä. Partikkelikoko ja omaispinta-ala pienenivät selvästi magnesiumpitoisuuden kasvaessa. Lämpötilan kasvattaminen lisäsi epäsäännöllisten kiteiden määrää ja muodostuneet kiteet olivat enemmän neulamaisia.
Resumo:
The papermaking industry has been continuously developing intelligent solutions to characterize the raw materials it uses, to control the manufacturing process in a robust way, and to guarantee the desired quality of the end product. Based on the much improved imaging techniques and image-based analysis methods, it has become possible to look inside the manufacturing pipeline and propose more effective alternatives to human expertise. This study is focused on the development of image analyses methods for the pulping process of papermaking. Pulping starts with wood disintegration and forming the fiber suspension that is subsequently bleached, mixed with additives and chemicals, and finally dried and shipped to the papermaking mills. At each stage of the process it is important to analyze the properties of the raw material to guarantee the product quality. In order to evaluate properties of fibers, the main component of the pulp suspension, a framework for fiber characterization based on microscopic images is proposed in this thesis as the first contribution. The framework allows computation of fiber length and curl index correlating well with the ground truth values. The bubble detection method, the second contribution, was developed in order to estimate the gas volume at the delignification stage of the pulping process based on high-resolution in-line imaging. The gas volume was estimated accurately and the solution enabled just-in-time process termination whereas the accurate estimation of bubble size categories still remained challenging. As the third contribution of the study, optical flow computation was studied and the methods were successfully applied to pulp flow velocity estimation based on double-exposed images. Finally, a framework for classifying dirt particles in dried pulp sheets, including the semisynthetic ground truth generation, feature selection, and performance comparison of the state-of-the-art classification techniques, was proposed as the fourth contribution. The framework was successfully tested on the semisynthetic and real-world pulp sheet images. These four contributions assist in developing an integrated factory-level vision-based process control.
Resumo:
The acceleration of solar energetic particles (SEPs) by flares and coronal mass ejections (CMEs) has been a major topic of research for the solar-terrestrial physics and geophysics communities for decades. This thesis discusses theories describing first-order Fermi acceleration of SEPs through repeated crossings at a CME-driven shock. We propose that particle trapping occurs through self-generated Alfvén waves, leading to a turbulent trapping region in front of the shock. Decelerating coronal shocks are shown to be capable of efficient SEP acceleration, provided seed particle injection is sufficient. Quasi-parallel shocks are found to inject thermal particles with good efficiency. The roles of minimum injection velocities, cross-field diffusion, downstream scattering efficiency and cross-shock potential are investigated in detail, with downstream isotropisation timescales having a major effect on injection efficiency. Accelerated spectra of heavier elements up to iron are found to exhibit significantly harder spectra than protons. Accelerated spectra cut-off energies are found to scale proportional to (Q/A)1.5, which is explained through analysis of the spectral shape of amplified Alfvénic turbulence. Acceleration times to different threshold energies are found to be non-linear, indicating that self-consistent time-dependent simulations are required in order to expose the full extent of acceleration dynamics. The well-established quasilinear theory (QLT) of particle scattering is investigated by comparing QLT scattering coefficients with those found via full-orbit simulations. QLT is found to overemphasise resonance conditions. This finding supports the simplifications implemented in the presented coronal shock acceleration (CSA) simulation software. The CSA software package is used to simulate a range of acceleration scenarios. The results are found to be in agreement with well-established particle acceleration theory. At the same time, new spatial and temporal dynamics of particle population trapping and wave evolution are revealed.
Resumo:
The interaction mean free path between neutrons and TRISO particles is simulated using scripts written in MATLAB to solve the increasing error present with an increase in the packing factor in the reactor physics code Serpent. Their movement is tracked both in an unbounded and in a bounded space. Their track is calculated, depending on the program, linearly directly using the position vectors of the neutrons and the surface equations of all the fuel particles; by dividing the space in multiple subspaces, each of which contain a fraction of the total number of particles, and choosing the particles from those subspaces through which the neutron passes through; or by choosing the particles that lie within an infinite cylinder formed on the movement axis of the neutron. The estimate from the current analytical model, based on an exponential distribution, for the mean free path, utilized by Serpent, is used as a reference result. The results from the implicit model in Serpent imply a too long mean free path with high packing factors. The received results support this observation by producing, with a packing factor of 17 %, approximately 2.46 % shorter mean free path compared to the reference model. This is supported by the packing factor experienced by the neutron, the simulation of which resulted in a 17.29 % packing factor. It was also observed that the neutrons leaving from the surfaces of the fuel particles, in contrast to those starting inside the moderator, do not follow the exponential distribution. The current model, as it is, is thus not valid in the determination of the free path lengths of the neutrons.