4 resultados para Tobacco Smoke Pollution - Adverse effects
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Background: Measurement of serum cotinine, a major metabolite of nicotine, provides a valid marker for quantifying exposure to tobacco smoke. Exposure to tobacco smoke causes vascular damage by multiple mechanisms, and it has been acknowledged as a risk factor for atherosclerosis. Multifactorial atherosclerosis begins in childhood, but the relationship between exposure to tobacco smoke and arterial changes related to early atherosclerosis have not been studied in children. Aims: The aim of the present study was to evaluate exposure to tobacco smoke with a biomarker, serum cotinine concentration, and its associations with markers of subclinical atherosclerosis and lipid profile in school-aged children and adolescents. Subjects and Methods: Serum cotinine concentration was measured using a gas chromatographic method annually between the ages 8 and 13 years in 538-625 children participating since infancy in a randomized, prospective atherosclerosis prevention trial STRIP (Special Turku coronary Risk factor Intervention Project). Conventional atherosclerosis risk factors were measured repeatedly. Vascular ultrasound studies were performed among 402 healthy 11-year-old children and among 494 adolescents aged 13 years. Results: According to serum cotinine measurements, a notable number of the school aged children and adolescents were exposed to tobacco smoke, but the exposure levels were only moderate. Exposure to tobacco smoke was associated with decreased endothelial function as measured with flow-mediated dilation of the brachial artery, decreased elasticity of the aorta, and increased carotid and aortic intima-media thickness. Longitudinal exposure to tobacco smoke was also related with increased apolipoprotein B and triglyceride levels in 13-year-old adolescents, whose body mass index and nutrient intakes did not differ. Conclusions: These findings suggest that exposure to tobacco smoke in childhood may play a significant role in the development of early atherosclerosis. Key Words: arterial elasticity, atherosclerosis, children, cotinine, endothelial function, environmental tobacco smoke, intima-media thickness, risk factors, ultrasound
Resumo:
Työssä tarkasteltiin tupakkalain vaikutuksia ravintoloiden ilmanvaihtoon ja työntekijöiden tupakansavulle altistumiseen. Lisäksi tutkittiin, mitä muita määräyksiä Suomessa ja muualla on ravintoloiden ilmanvaihdosta ja minkälaisin ilmanvaihdollisin menetelmin voidaan ravintolatyöntekijöiden altistumista tupakansavulle vähentää. Kokeellisena osana tutkittiin Halton Oy:n kehittämän baaritiskin paikallisilmanvaihtojärjestelmän suojaustehokkuutta ja toimivuutta suomalaisessa yökerhossa. Järjestelmään kuului kattoon sijoitettu kohdepuhallus ja baaripöytään sijoitettu ilmaverholaitteisto. Mittaukset suoritettiin käytännön olosuhteissa toimivassa ravintolassa. Mitattuina suureina olivat sisäilman nikotiini- ja hiukkaspitoisuus työskentelyalueella ja asiakkaiden oleskeluvyöhykkeellä. Lisäksi käytettiin merkkiainemenetelmää tupakansavun leviämisen seuraamiseen. Saavutettu suojaustehokkuus oli mittaustavasta ja tilanteesta riippuen 72-95%. Mittaukset osoittivat, että tutkitulla paikallisilmanvaihtoratkaisulla voitiin hyvin oleellisesti vähentää ympäristön tupakansavun kulkeutumista työntekijöiden hengitysvyöhykkeelle. Paikallisilmanvaihto on kuitenkin toteutettava osana koko ravintolan ilmanvaihtoa ja säädettävä oikein hyvän tuloksen saavuttamiseksi.
Resumo:
Oxycodone is an opioid used in the treatment of moderate or severe pain. It is principally metabolized in the liver by cytochrome P450 3A (CYP3A) enzymes whereas approximately 10% is metabolized by CYP2D6. Little is known about the interactions between oxycodone and other drugs, herbals and nutritional substances. In this work the effects of CYP3A inducers rifampicin and St. John’s wort and CYP3A inhibitors voriconazole, grapefruit juice, ritonavir and lopinavir/ritonavir were investigated on the pharmacokinetics and pharmacodynamics of oxycodone. All studies were randomized, balanced, placebo-controlled crossover clinical studies in healthy volunteers. The plasma concentrations of oxycodone and its metabolites were determined for 48 hours and pharmacodynamic parameters were recorded for 12 hours in each study. Pharmacokinetic parameters were calculated by noncompartmental methods. Rifampicin decreased the plasma concentrations, analgesic effects, and oral bioavailability of oral oxycodone. St. John’s wort reduced the concentrations of oxycodone and diminished the self-reported drug effect. Voriconazole increased the exposure to oral oxycodone by 3.6-fold whereas grapefruit juice, which inhibits predominantly the intestinal CYP3A, elevated the mean concentrations of oxycodone by 1.7-fold. Ritonavir and lopinavir/ritonavir increased the mean AUC of oxycodone by 3.0- and 2.6-fold, respectively, and prolonged its elimination half-life. In spite of increased oxycodone plasma concentrations during concomitant administration of CYP3A inhibitors, the analgesic effects were not increased. These studies show that the induction or inhibition of CYP3A alters the pharmacokinetics and pharmacologic effects of oxycodone. The exposure to oxycodone decreased after induction and increased after inhibition of CYP3A. As a conclusion, the clinicians should avoid concomitant administration of CYP3A inducers or inhibitors and oral oxycodone. If this is not possible, they should be prepared to interactions leading to impaired analgesia after CYP3A inducers or increased adverse effects after CYP3A inhibitors and oral oxycodone.
Resumo:
The human body eliminates foreign compounds primarily by metabolizing them to hydrophilic forms to facilitate effective excretion through the kidneys. Cytochrome P450 (CYP) enzymes in the liver and intestine contribute to the metabolism of many drugs. Pharmacokinetic drugdrug interactions occur if the activity of CYPs are inhibited or induced by another drug. Prescribing multiple drugs to the improve effectiveness of therapy or to treat coexisting diseases is a common practice in clinical medicine. Polypharmacy predisposes patients to adverse effects because of the profound unpredictability in CYP enzymatic-mediated drug metabolism. S-ketamine is a phencyclidine derivative which functions as an antagonist of the N-methyl-Daspartate (NMDA) receptor in the central nervous system. It is a unique anaesthetic producing “dissociative anaesthesia” in high doses and analgesia in low doses. Studies with human liver microsomes suggest that ketamine is metabolized primarily via CYP3A4 and CYP2B6 enzymes. In this thesis, in healthy volunteers, randomized and controlled cross-over studies were conducted to investigate the effects of different CYP inducers and inhibitors on the pharmacokinetics and pharmacodynamics of oral and intravenous S-ketamine. The plasma concentrations of ketamine and its metabolite, norketamine, were determined at different timepoints over a 24 hour period. Other pharmacodynamic variables were examined for 12 hours. Results of these studies showed that the inhibition of the CYP3A4 pathway by clarithromycin or grapefruit juice increased the exposure to oral S-ketamine by 2.6- and 3.0-fold. Unexpectedly, CYP3A4 inhibition by itraconazole caused no significant alterations in the plasma concentrations of oral S-ketamine. CYP3A4 induction by St. John´s wort or rifampicin decreased profoundly the concentrations of oral S-ketamine. However, after rifampicin, there were no significant differences in the plasma concentrations of S-ketamine when it was administered intravenously. This demonstrated that rifampicin inhibited the metabolism of Sketamine at the intestinal level. When CYP2B6 was inhibited by ticlopidine, there was a 2.4- fold increase in the exposure of S-ketamine. These studies demonstrated that low dose oral Sketamine is metabolized both via CYP3A4 and CYP2B6 pathways. The concomitant use of drugs that affect CYP3A4 or CYP2B6, during oral S-ketamine treatment, may cause clinically significant drug-drug interactions.