16 resultados para Time separation of events
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selostus: Ó-lactalbumiinin ja ¿̐ư-lactoglobuliinin sentrifugointierotuksen optimointi
Resumo:
Abstract
Resumo:
Abstract
Resumo:
In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.
Resumo:
IP-verkkojen hyvin tunnettu haitta on, että nämä eivät pysty takaamaan tiettyä palvelunlaatua (Quality of Service) lähetetyille paketeille. Seuraavat kaksi tekniikkaa pidetään lupaavimpina palvelunlaadun tarjoamiselle: Differentiated Services (DiffServ) ja palvelunlaatureititys (QoS Routing). DiffServ on varsin uusi IETF:n määrittelemä Internetille tarkoitettu palvelunlaatumekanismi. DiffServ tarjoaa skaalattavaa palvelujen erilaistamista ilman viestintää joka hypyssä ja per-flow –tilan ohjausta. DiffServ on hyvä esimerkki hajautetusta verkkosuunnittelusta. Tämän palvelutasomekanismin tavoite on viestintäjärjestelmien suunnittelun yksinkertaistaminen. Verkkosolmu voidaan rakentaa pienestä hyvin määritellystä rakennuspalikoiden joukosta. Palvelunlaatureititys on reititysmekanismi, jolla liikennereittejä määritellään verkon käytettävissä olevien resurssien pohjalta. Tässä työssä selvitetään uusi palvelunlaatureititystapa, jota kutsutaan yksinkertaiseksi monitiereititykseksi (Simple Multipath Routing). Tämän työn tarkoitus on suunnitella palvelunlaatuohjain DiffServille. Tässä työssä ehdotettu palvelunlaatuohjain on pyrkimys yhdistää DiffServ ja palvelunlaatureititysmekanismeja. Työn kokeellinen osuus keskittyy erityisesti palvelunlaatureititysalgoritmeihin.
Resumo:
Tässä työssä on tutkittu ammoniakin ja hiilidioksidin erottamista adsorptio prosessilla ja suunniteltiin paineen muunteluun perustuvan adsorptioprosessin (PSA) käyttöä. Työn tarkoituksena oli laskea adsorptioon perustuvan prosessin kannattavuus melamiinitehtaan poistokaasujen erotuksessa. Tätä varten työssä suunniteltiin tehdasmitta-kaavainen prosessi ja arvioitiin sen kannattavuus. Työssä mitattiin adsorptiotasapainot, joiden perusteella sovitettiin sopiva kokeellinen adsorptioisotermi. Adsorptioisotermi lisättiin simulointiohjelmaan, jonka avulla suunniteltiin kaksi vaihtoehtoista pilot laitteistoa kaasujen erottamiseksi. Toisella pilot laitteistolla saadaan mitattua vain läpäisykäyrät, mutta paremmalla versiolla saadaan myös tietoa erotettujen komponenttien puhtaudesta. Suunnittelun tärkeimpiä lähtökohtia on molempien komponenttien mahdollisimman korkea puhtaus ja talteenottoaste. Täysimittakaavainen tehdas suunniteltiin simulointiohjelmiston avulla kahdelle eri kapasiteetille ja arvioitiin niiden kustannukset ja kannattavuus. Adsorptioprosessit osoittautuivat kannattaviksi kaasuseoksen erottamisessa kummassakin tapauksessa
The effects of real time control of welding parameters on weld quality in plasma arc keyhole welding
Resumo:
Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.
Resumo:
This thesis concentrates on studying the operational disturbance behavior of machine tools integrated into FMS. Operational disturbances are short term failures of machine tools which are especially disruptive to unattended or unmanned operation of FMS. The main objective was to examine the effect of operational disturbances on reliability and operation time distribution for machine tools. The theoretical part of the thesis covers the fimdamentals of FMS relating to the subject of this study. The concept of FMS, its benefits and operator's role in FMS operation are reviewed. The importance of reliability is presented. The terms describing the operation time of machine tools are formed by adopting standards and references. The concept of failure and indicators describing reliability and operational performance for machine tools in FMSs are presented. The empirical part of the thesis describes the research methodology which is a combination of automated (ADC) and manual data collection. By using this methodology it is possible to have a complete view of the operation time distribution for studied machine tools. Data collection was carried out in four FMSs consisting of a total of 17 machine tools. Each FMS's basic features and the signals of ADC are described. The indicators describing the reliability and operation time distribution of machine tools were calculated according to collected data. The results showed that operational disturbances have a significant influence on machine tool reliability and operational performance. On average, an operational disturbance occurs every 8,6 hours of operation time and has a down time of 0,53 hours. Operational disturbances cause a 9,4% loss in operation time which is twice the amount of losses caused by technical failures (4,3%). Operational disturbances have a decreasing influence on the utilization rate. A poor operational disturbance behavior decreases the utilization rate. It was found that the features of a part family to be machined and the method technology related to it are defining the operational disturbance behavior of the machine tool. Main causes for operational disturbances were related to material quality variations, tool maintenance, NC program errors, ATC and machine tool control. Operator's role was emphasized. It was found that failure recording activity of the operators correlates with the utilization rate. The more precisely the operators record the failure, the higher is the utilization rate. Also the FMS organizations which record failures more precisely have fewer operational disturbances.
Resumo:
This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.
Resumo:
The objective of this thesis was to study the removal of gases from paper mill circulation waters experimentally and to provide data for CFD modeling. Flow and bubble size measurements were carried out in a laboratory scale open gas separation channel. Particle Image Velocimetry (PIV) technique was used to measure the gas and liquid flow fields, while bubble size measurements were conducted using digital imaging technique with back light illumination. Samples of paper machine waters as well as a model solution were used for the experiments. The PIV results show that the gas bubbles near the feed position have the tendency to escape from the circulation channel at a faster rate than those bubbles which are further away from the feed position. This was due to an increased rate of bubble coalescence as a result of the relatively larger bubbles near the feed position. Moreover, a close similarity between the measured slip velocities of the paper mill waters and that of literature values was obtained. It was found that due to dilution of paper mill waters, the observed average bubble size was considerably large as compared to the average bubble sizes in real industrial pulp suspension and circulation waters. Among the studied solutions, the model solution has the highest average drag coefficient value due to its relatively high viscosity. The results were compared to a 2D steady sate CFD simulation model. A standard Euler-Euler k-ε turbulence model was used in the simulations. The channel free surface was modeled as a degassing boundary. From the drag models used in the simulations, the Grace drag model gave velocity fields closest to the experimental values. In general, the results obtained from experiments and CFD simulations are in good qualitative agreement.
Resumo:
When modeling machines in their natural working environment collisions become a very important feature in terms of simulation accuracy. By expanding the simulation to include the operation environment, the need for a general collision model that is able to handle a wide variety of cases has become central in the development of simulation environments. With the addition of the operating environment the challenges for the collision modeling method also change. More simultaneous contacts with more objects occur in more complicated situations. This means that the real-time requirement becomes more difficult to meet. Common problems in current collision modeling methods include for example dependency on the geometry shape or mesh density, calculation need increasing exponentially in respect to the number of contacts, the lack of a proper friction model and failures due to certain configurations like closed kinematic loops. All these problems mean that the current modeling methods will fail in certain situations. A method that would not fail in any situation is not very realistic but improvements can be made over the current methods.
Resumo:
The aim of this thesis is to define effects of lignin separation process on Pulp mill chemical balance especially on sodium/sulphur-balance. The objective is to develop a simulation model with WinGEMS Process Simulator and use that model to simulate the chemical balances and process changes. The literature part explains what lignin is and how kraft pulp is produced. It also introduces to the methods that can be used to extract lignin from black liquor stream and how those methods affect the pulping process. In experimental part seven different cases are simulated with the created simulation model. The simulations are based on selected reference mill that produces 500 000 tons of bleached air-dried (90 %) pulp per year. The simulations include the chemical balance calculation and the estimated production increase. Based on the simulations the heat load of the recovery boiler can be reduced and the pulp production increased when lignin is extracted. The simulations showed that decreasing the waste acid stream intake from the chlorine dioxide plant is an effective method to control the sulphidity level when about 10 % of lignin is extracted. With higher lignin removal rates the in-mill sulphuric acid production has been discovered to be a better alternative to the sulphidity control.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.