21 resultados para Sustainable energy

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyanobacteria are a diverse group of oxygenic photosynthetic bacteria that inhabit in a wide range of environments. They are versatile and multifaceted organisms with great possibilities for different biotechnological applications. For example, cyanobacteria produce molecular hydrogen (H2), which is one of the most important alternatives for clean and sustainable energy. Apart from being beneficial, cyanobacteria also possess harmful characteristics and may become a source of threat to human health and other living organisms, as they are able to form surface blooms that are producing a variety of toxic or bioactive compounds. The University of Helsinki Culture Collection (UHCC) maintains around 1,000 cyanobacterial strains representing a large number of genera and species isolated from the Baltic Sea and Finnish lakes. The culture collection covers different life forms such as unicellular and filamentous, N2-fixing and non-N2-fixing strains, and planktonic and benthic cyanobacteria. In this thesis, the UHCC has been screened to identify potential strains for sustainable biohydrogen production and also for strains that produce compounds modifying the bioenergetic pathways of other cyanobacteria or terrestrial plants. Among the 400 cyanobacterial strains screened so far, ten were identified as high H2-producing strains. The enzyme systems involved in H2 metabolism of cyanobacteria were analyzed using the Southern hybridization approach. This revealed the presence of the enzyme nitrogenase in all strains tested, while none of them are likely to have contained alternative nitrogenases. All the strains tested, except for two Calothrix strains, XSPORK 36C and XSPORK 11A, were suggested to contain both uptake and bidirectional hydrogenases. Moreover, 55 methanol extracts of various cyanobacterial strains were screened to identify potent bioactive compounds affecting the photosynthetic apparatus of the model cyanobacterium, Synechocystis PCC 6803. The extract from Nostoc XPORK 14A was the only one that modified the photosynthetic machinery and dark respiration. The compound responsible for this effect was identified, purified, and named M22. M22 demonstrated a dual-action mechanism: production of reactive oxygen species (ROS) under illumination and an unknown mechanism that also prevailed in the dark. During summer, the Baltic Sea is occupied by toxic blooms of Nodularia spumigena (hereafter referred to as N. spumigena), which produces a hepatotoxin called nodularin. Long-term exposure of the terrestrial plant spinach to nodularin was studied. Such treatment resulted in inhibition of growth and chlorosis of the leaves. Moreover, the activity and amount of mitochondrial electron transfer complexes increased in the leaves exposed to nodularin-containing extract, indicating upregulation of respiratory reactions, whereas no marked changes were detected in the structure or function of the photosynthetic machinery. Nodularin-exposed plants suffered from oxidative stress, evidenced by oxidative modifications of various proteins. Plants initiated strategies to combat the stress by increasing the levels of alpha-tocopherol, mitochondrial alternative oxidase (AOX), and mitochondrial ascorbate peroxidase (mAPX).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy scenarios are used as a tool to examine credible future states and pathways. The one who constructs a scenario defines the framework in which the possible outcomes exist. The credibility of a scenario depends on its compatibility with real world experiences, and on how well the general information of the study, methodology, and originality and processing of data are disclosed. In the thesis, selected global energy scenarios’ transparency and desirability from the society’s point of view were evaluated based on literature derived criteria. The global energy transition consists of changes to social conventions and economic development in addition to technological development. Energy solutions are economic and ethical choices due to far-reaching impacts of energy decision-making. Currently the global energy system is mostly based on fossil fuels, which is unsustainable over the long-term due to various reasons: negative climate change impacts, negative health impacts, depletion of fossil fuel reserves, resource-use conflicts with water management and food supply, loss of biodiversity, challenge to preserve ecosystems and resources for future generations, and inability of fossil fuels to provide universal access to modern energy services. Nuclear power and carbon capture and storage cannot be regarded as sustainable energy solutions due to their inherent risks and required long-term storage. The energy transition is driven by a growing energy demand, decreasing costs of renewables, modularity and scalability of renewable technologies, macroeconomic benefits of using renewables, investors’ risk awareness, renewable energy related attractive business opportunities, almost even distribution of solar and wind resources on the planet, growing awareness of the planet’s environmental status, environmental movements and tougher environmental legislation. Many of the investigated scenarios identified solar and wind power as a backbone for future energy systems. The scenarios, in which the solar and wind potentials were deployed in largest scale, met best the set out sustainability criteria. In future research, energy scenarios’ transparency can be improved by better disclosure on who has ordered the study, clarifying the funding, clearly referencing to used sources and indicating processed data, and by exploring how variations in cost assumptions and deployment of technologies influence on the outcomes of the study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through indisputable evidence of climate change and its link to the greenhouse gas emissions comes the necessity for change in energy production infrastructure during the coming decades. Through political conventions and restrictions energy industry is pushed toward using bigger share of renewable energy sources as energy supply. In addition to climate change, sustainable energy supply is another major issue for future development plans, but neither of these should come with unbearable price. All the power production types have environmental effects as well as strengths and weaknesses. Although each change comes with a price, right track in minimising the environmental impacts and energy supply security can be found by combining all possible low-carbon technologies and by improving energy efficiency in all sectors, for creating a new power production infrastructure of tolerable energy price and of minor environmental effects. GEMIS-Global Emission Model for Integrated Systems is a life-cycle analysis program which was used in this thesis to make indicative energy models for Finland’s future energy supply. Results indicate that the energy supply must comprise both high capacity nuclear power as well as large variation of renewable energy sources for minimization of all environmental effects and keeping energy price reasonable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tämä diplomityö perustuu Lappeenrannan teknillisen yliopiston Uusiutuvien energiajärjestelmien laboratorion koelaitteistoon, jolla tutkitaan voimakkaan savukaasunkierrätyksen ja kuumailmapolton soveltuvuutta pienen kokoluokan energiantuotantoprosesseihin. Työn teoriaosassa esitellään tavanomaisesta palamisesta eroavaa kuumailmapolttoa ja tarkastellaan sen ominaisuuksia. Myös työssä käytetyn tutkimusmenetelmän, numeerisen virtauslaskennan, periaatteita ja ominaisuuksia tarkastellaan. Työssä tutkitaan numeerisella virtausmallinnuksella kuumailmapolttolaitteiston virtauskentän käyttäytymistä, kun takaisin tulipesään kierrätettävän savukaasun määrä sekä tulipesän lämpöhäviöiden suuruus vaihtelevat. Virtauskentän tarkastelu on tärkeää, sillä palamisilman ja kierrätetyn savukaasun täytyy sekoittua kuumailmapolton aikaansaamiseksi. Työn virtausmallinnus suoritettiin Finflo-virtausratkaisijalla kaksiulotteisena palamisreaktioita mallintamatta. Vaikka työssä käytetyt mallit olivat kaksiulotteisia ja niissä käytettiin yksinkertaistuksia, virtausten käyttäytymisestä tulipesässä saatiin olennaista tietoa, jota voidaan mahdollisesti hyödyntää jatkotutkimuksissa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on tutkia ekologisen kestävyyden huomioimista Suomen innovaatiojärjestelmässä. Ekologinen kestävyys on osa laajempaa kestävän kehityksen käsitettä, joka syntyi jo 1980-luvun lopulla. Sillä viitataan toimintaan, joka jättää mahdollisuuksia tuleville sukupolville yhtä paljon tai enemmän kuin nykyään on käytettävissä. Kestävyyteen pyritään nykyisin laajalti ja sen toteutumisen turvaamiseksi on laadittu muun muassa EU-maat, Pohjoismaat ja Suomen kattavat strategiat. Ekologisen kestävyyden suurimmat uhat ovat tällä hetkellä ilmastonmuutos, biodiversiteetin pieneneminen ja ravinteiden kierto. Kestävä innovointi ja ympäristöinnovaatiot ovat tärkeitä keinoja ekologiseen kestävyyteen panostettaessa. Näissä innovaatioissa kyse on teknologian, talouden ja ympäristön tasapainosta. Suomen innovaatiotoimintaa tuetaan ja kansallista kilpailukykyä pidetään yllä kansallisen innovaatiojärjestelmän avulla. Suomen innovaatiojärjestelmässä on useita eri tason toimijoita. Tärkeimpinä voidaan pitää päättäjiä, rahoittajia ja tutkimuksen tuottajia. Rahoituksen suuntaaminen vaikuttaa siihen, mistä aihealueista tutkimusta tuotetaan. Suomen Akatemialla, Tekesillä ja Sitralla on ekologista kestävyyttä edistäviä ohjelmia. Lisäksi mm. SHOK:issa on huomioitu ekologisuus. Perustutkimusta rahoitetaan Suomen innovaatiojärjestelmässä huomattavasti soveltavaa tutkimusta vähemmän. Ekologiseen kestävyyteen panostavan tutkimuksen teemoista nousee selkeimmin esiin kestävä energiantuotanto sekä kestävä rakentaminen. Jatkotutkimuksena voisi selvittää, kuinka nämä panostukset ovat vaikuttaneet suomalaiseen rakennusalaan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report summarizes the work done by a consortium consisting of Lappeenranta University of Technology, Aalto University and VTT Technical Research Centre of Finland in the New Type Nuclear Reactors (NETNUC) project during 2008–2011. The project was part of the Sustainable Energy (SusEn) research programme of the Academy of Finland. A wide range of generation IV nuclear technologies were studied during the project and the research consisted of multiple tasks. This report contains short articles summarizing the results of the individual tasks. In addition, the publications produced and the persons involved in the project are listed in the appendices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study considered the current situation of biofuels markets in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 21% of the total energy consumption in 2006. Almost 80% of the wood-based energy is recovered from industrial by-products and residues. Finland has commitment itself to maintaining its greenhouse gas emissions at the 1990 level, at the highest, during the period 2008–2012. The energy and climate policy carried out in recent years has been based on the National Energy and Climate introduced in 2005. The Finnish energy policy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In 2007, the government started to prepare a new long-term (up to the year 2050) climate and energy strategy that will meet EU’s new targets for the reduction of green house gas emissions and the promotion of renewable energy sources. The new strategy will be introduced during 2008. The international biofuels trade has a substantial importance for the utilisation of bioenergy in Finland. In 2006, the total international trading of solid and liquid biofuels was approximately 64 PJ of which import was 61 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2006, as much as 24% of wood energy was based on foreignorigin wood. Wood pellets and tall oil form the majority of export streams of biofuels. The indirect import of wood fuels increased almost 10% in 2004–2006, while the direct trade of solid and liquid biofuels has been almost constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy industry has gone through major changes globally in past two decades. Liberalization of energy markets has led companies to integrate both vertically and horizontally. Growing concern on sustainable development and aims to decrease greenhouse gases in future will increase the portion of renewable energy in total energy production. Purpose of this study was to analyze using statistical methods, what impacts different strategic choices has on biggest European and North American energy companies’ performance. Results show that vertical integration, horizontal integration and use of renewable energy in production had the most impact on profitability. Increase in level of vertical integration decreased companies’ profitability, while increase in horizontal integration improved companies’ profitability. Companies that used renewable energy in production were less profitable than companies not using renewable energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional forest industry is a good example of the changing nature of the competitive environment in many industries. Faced with drastic challenges forestindustry companies are forced to search for new value-creating strategies in order to create competitive advantage. The emerging bioenergy business is now offering promising avenues for value creation for both the forest and energy sectors because of their complementary resources and knowledge with respect to bioenergy production from forest-based biomass. The key objective of this dissertation is to examine the sources of sustainable competitive advantage and the value-creation opportunities that are emerging at the intersection between the forest and energy industries. The research topic is considered from different perspectives in order to provide a comprehensive view of the phenomenon. The study discusses the business opportunities that are related to producing bioenergy from forest-based biomass, and sheds light on the greatest challenges and threats influencing the success of collaboration between the forest and energy sectors. In addition, it identifies existing and potential bioenergy actors, and considers the resources and capabilities needed in order to prosper in the bioenergy field. The value-creation perspective is founded on strategic management accounting, the theoretical frameworks are adopted from the field of strategic management, and the future aspect is taken into account through the application of futures studies research methodology. This thesis consists of two parts. The first part provides a synthesis of the overall dissertation, and the second part comprises four complementary research papers. There search setting is explorative in nature, and both qualitative and quantitative research methods are used. As a result, the thesis lays the foundation for non-technological studies on bioenergy. It gives an example of how to study new value-creation opportunities at an industrial intersection, and discusses the main determinants affecting the value-creation process. In order to accomplish these objectives the phenomenon of value creation at the intersection between the forest and energy industries is theorized and connected with the dynamic resource-based view of the firm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis explores global and national-level issues related to the development of markets for biomass for energy. The thesis consists of five separate papers and provides insights on selected issues. The aim of Paper I was to identify methodological and statistical challenges in assessing international solid and liquid biofuels trade and provide an overview of the Finnish situation with respect to the status of international solid and liquid biofuels trade. We found that, for the Finnish case, it is possible to qualify direct and indirect trade volumes of biofuels. The study showed that indirect trade of biofuels has a highly significant role in Finland and may be a significant sector also in global biofuels trade. The purpose of Paper II was to provide a quantified insight into Finnish prospects for meeting the national 2020 renewable energy targets and concurrently becoming a largescale producer of forest-biomass-based second-generation biofuels for feeding increasing demand in European markets. We found that Finland has good opportunities to realise a scenario to meet 2020 renewable energy targets and for large-scale production of wood-based biofuels. The potential net export of transport biofuels from Finland in 2020 would correspond to 2–3% of European demand. Paper III summarises the global status of international solid and liquid biofuels trade as illuminated by several separate sources. International trade of biofuels was estimated at nearly 1 EJ for 2006. Indirect trade of biofuels through trading of industrial roundwood and material by-products comprises the largest proportion of the trading, with a share of about two thirds. The purpose of Paper IV was to outline a comprehensive picture of the coverage of various certification schemes and sustainability principles relating to the entire value-added chain of biomass and bioenergy. Regardless of the intensive work that has been done in the field of sustainability schemes and principles concerning use of biomass for energy, weaknesses still exist. The objective of Paper V was to clarify the alternative scenarios for the international biomass market until 2020 and identify the underlying steps needed toward a wellfunctioning and sustainable market for biomass for energy purposes. An overall conclusion drawn from this analysis concerns the enormous opportunities related to the utilisation of biomass for energy in the coming decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this positioning paper transition management (TM) and the sustainable nutrient economy are addressed. We discuss TM from its scholarly origins in the 1990’s to its implementation as a comprehensive sector-wide policy program on sustainability in The Netherlands during the first decade of the 2000´s. Although the program was innovative and provoked a new approach to environmental policy and governance, the program at large failed to set the right conditions under which sustainable transition take place. Lessons from the Netherlands, both successful and less successful, are addressed in this positioning paper to inform Finnish governmental and knowledge institutes on how (not) to implement TM on environmental issues. When looking at sustainable nutrient economy the paper takes a historical view at how problems with nutrients (especially phosphates) were dealt with in the Netherlands during the post World War II era. This transition did not occur easily. In the agricultural sector environmental policies to prevent nutrient problems were not easily accepted, as large agricultural economic interests were at stake and the sector’s main actors were generally opposed to (radical) environmental transition. Currently, sustainable nutrient economy initiatives are starting to receive attention on the political agenda once again. In 2011 a sector- and chain-wide covenant was signed, showing that sustainable nutrient transition goals get commitment from stakeholders throughout the nutrient chain. We judge that TM provides useful elements that are applicable to Finnish governance modes to support sustainable nutrient economy transition. However, the Finnish government should be careful when implementing TM to prevent making the same mistakes the Dutch government made in previous years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operation of pulp and paper mills generates waste including wastewater treatment sludge and deinking sludge. Both sludge types are generated in large amounts and are mainly disposed of in landfills in the Leningrad Region resulting in environmental degradation. The thesis was aimed at seeking new sustainable ways of sludge utilization. Two paper mills operating in the Leningrad Region and landfilling their sludge were identified: “SCA Hygiene Products Russia” and “Knauf”. The former generates 150 t/day of deinking sludge, the latter – 145 t/day of secondary sludge. Chemical analyses of deinking sludge were performed to assess applicability of sludge in construction materials production processes. Higher heating value on dry basis of both sludge types was determined to evaluate energy potential of sludge generated in the Leningrad Region. Total energy output from sludge incineration was calculated. Deinking sludge could be utilized in the production process of “LSR-Cement” or “Slantsy Cement Plant Cesla” factories, and “Pobeda” and “Nikolsky” brick mills without exceeding current sludge management costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The iron and steelmaking industry is among the major contributors to the anthropogenic emissions of carbon dioxide in the world. The rising levels of CO2 in the atmosphere and the global concern about the greenhouse effect and climate change have brought about considerable investigations on how to reduce the energy intensity and CO2 emissions of this industrial sector. In this thesis the problem is tackled by mathematical modeling and optimization using three different approaches. The possibility to use biomass in the integrated steel plant, particularly as an auxiliary reductant in the blast furnace, is investigated. By pre-processing the biomass its heating value and carbon content can be increased at the same time as the oxygen content is decreased. As the compression strength of the preprocessed biomass is lower than that of coke, it is not suitable for replacing a major part of the coke in the blast furnace burden. Therefore the biomass is assumed to be injected at the tuyere level of the blast furnace. Carbon capture and storage is, nowadays, mostly associated with power plants but it can also be used to reduce the CO2 emissions of an integrated steel plant. In the case of a blast furnace, the effect of CCS can be further increased by recycling the carbon dioxide stripped top gas back into the process. However, this affects the economy of the integrated steel plant, as the amount of top gases available, e.g., for power and heat production is decreased. High quality raw materials are a prerequisite for smooth blast furnace operation. High quality coal is especially needed to produce coke with sufficient properties to ensure proper gas permeability and smooth burden descent. Lower quality coals as well as natural gas, which some countries have in great volumes, can be utilized with various direct and smelting reduction processes. The DRI produced with a direct reduction process can be utilized as a feed material for blast furnace, basic oxygen furnace or electric arc furnace. The liquid hot metal from a smelting reduction process can in turn be used in basic oxygen furnace or electric arc furnace. The unit sizes and investment costs of an alternative ironmaking process are also lower than those of a blast furnace. In this study, the economy of an integrated steel plant is investigated by simulation and optimization. The studied system consists of linearly described unit processes from coke plant to steel making units, with a more detailed thermodynamical model of the blast furnace. The results from the blast furnace operation with biomass injection revealed the importance of proper pre-processing of the raw biomass as the composition of the biomass as well as the heating value and the yield are all affected by the pyrolysis temperature. As for recycling of CO2 stripped blast furnace top gas, substantial reductions in the emission rates are achieved if the stripped CO2 can be stored. However, the optimal recycling degree together with other operation conditions is heavily dependent on the cost structure of CO2 emissions and stripping/storage. The economical feasibility related to the use of DRI in the blast furnace depends on the price ratio between the DRI pellets and the BF pellets. The high amount of energy needed in the rotary hearth furnace to reduce the iron ore leads to increased CO2 emissions.