10 resultados para Sufficient conditions
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Ortogonaalisen M-kaistaisen moniresoluutioanalyysin matemaattiset perusteet esitetään yksityiskohtaisesti. Coifman-aallokkeiden määritelmä yleistetään dilaatiokertoimelle M ja nollasta poikkeavalle häviävien momenttien keskukselle.Funktion approksimointia näytepisteistä aallokkeiden avulla pohditaan ja erityisesti esitetään approksimaation asymptoottinen virhearvio Coifman-aallokkeille. Skaalaussuotimelle osoitetaan välttämättömät ja riittävät ehdot, jotka johtavat yleistettyihin Coifman-aallokkeisiin. Moniresoluutioanalyysin tiheys todistetaansuoraan Lebesguen integraalin määritelmään perustuen yksikön partitio-ominaisuutta käyttäen. Todistus on riittävä sellaisenaan avaruudessa L2(Wd) käyttämättä Fourier-tason ominaisuuksia tai ehtoja. Mallatin algoritmi johdetaan M-kaistaisille aallokkeille ja moniuloitteisille signaaleille. Algoritmille esitetään myös rekursiivinen muoto. Differentiaalievoluutioalgoritmin avulla ratkaistaan Coifman-aallokkeisiin liittyvien skaalaussuotimien kertoimien arvoja useille skaalausfunktiolle. Approksimaatio- ja kuvanpakkausesimerkkejä esitetään menetelmien havainnollistamiseksi. Differentiaalievoluutioalgoritmin avulla etsitään myös referenssikuville optimoitu skaalaussuodin. Löydetty suodin on regulaarinen ja erittäinsymmetrinen.
Resumo:
The development of correct programs is a core problem in computer science. Although formal verification methods for establishing correctness with mathematical rigor are available, programmers often find these difficult to put into practice. One hurdle is deriving the loop invariants and proving that the code maintains them. So called correct-by-construction methods aim to alleviate this issue by integrating verification into the programming workflow. Invariant-based programming is a practical correct-by-construction method in which the programmer first establishes the invariant structure, and then incrementally extends the program in steps of adding code and proving after each addition that the code is consistent with the invariants. In this way, the program is kept internally consistent throughout its development, and the construction of the correctness arguments (proofs) becomes an integral part of the programming workflow. A characteristic of the approach is that programs are described as invariant diagrams, a graphical notation similar to the state charts familiar to programmers. Invariant-based programming is a new method that has not been evaluated in large scale studies yet. The most important prerequisite for feasibility on a larger scale is a high degree of automation. The goal of the Socos project has been to build tools to assist the construction and verification of programs using the method. This thesis describes the implementation and evaluation of a prototype tool in the context of the Socos project. The tool supports the drawing of the diagrams, automatic derivation and discharging of verification conditions, and interactive proofs. It is used to develop programs that are correct by construction. The tool consists of a diagrammatic environment connected to a verification condition generator and an existing state-of-the-art theorem prover. Its core is a semantics for translating diagrams into verification conditions, which are sent to the underlying theorem prover. We describe a concrete method for 1) deriving sufficient conditions for total correctness of an invariant diagram; 2) sending the conditions to the theorem prover for simplification; and 3) reporting the results of the simplification to the programmer in a way that is consistent with the invariantbased programming workflow and that allows errors in the program specification to be efficiently detected. The tool uses an efficient automatic proof strategy to prove as many conditions as possible automatically and lets the remaining conditions be proved interactively. The tool is based on the verification system PVS and i uses the SMT (Satisfiability Modulo Theories) solver Yices as a catch-all decision procedure. Conditions that were not discharged automatically may be proved interactively using the PVS proof assistant. The programming workflow is very similar to the process by which a mathematical theory is developed inside a computer supported theorem prover environment such as PVS. The programmer reduces a large verification problem with the aid of the tool into a set of smaller problems (lemmas), and he can substantially improve the degree of proof automation by developing specialized background theories and proof strategies to support the specification and verification of a specific class of programs. We demonstrate this workflow by describing in detail the construction of a verified sorting algorithm. Tool-supported verification often has little to no presence in computer science (CS) curricula. Furthermore, program verification is frequently introduced as an advanced and purely theoretical topic that is not connected to the workflow taught in the early and practically oriented programming courses. Our hypothesis is that verification could be introduced early in the CS education, and that verification tools could be used in the classroom to support the teaching of formal methods. A prototype of Socos has been used in a course at Åbo Akademi University targeted at first and second year undergraduate students. We evaluate the use of Socos in the course as part of a case study carried out in 2007.
Resumo:
Since its introduction, fuzzy set theory has become a useful tool in the mathematical modelling of problems in Operations Research and many other fields. The number of applications is growing continuously. In this thesis we investigate a special type of fuzzy set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as possibility distributions) have been widely used in quantitative analysis in recent decades. In this work two measures of interactivity are defined for fuzzy numbers, the possibilistic correlation and correlation ratio. We focus on both the theoretical and practical applications of these new indices. The approach is based on the level-sets of the fuzzy numbers and on the concept of the joint distribution of marginal possibility distributions. The measures possess similar properties to the corresponding probabilistic correlation and correlation ratio. The connections to real life decision making problems are emphasized focusing on the financial applications. We extend the definitions of possibilistic mean value, variance, covariance and correlation to quasi fuzzy numbers and prove necessary and sufficient conditions for the finiteness of possibilistic mean value and variance. The connection between the concepts of probabilistic and possibilistic correlation is investigated using an exponential distribution. The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy Pay-Off method. This model for real option valuation is based on findings from earlier real option valuation models. We illustrate the use of number of different types of fuzzy numbers and mean value concepts with the method and provide a real life application.
Resumo:
This thesis addresses the use of covariant phase space observables in quantum tomography. Necessary and sufficient conditions for the informational completeness of covariant phase space observables are proved, and some state reconstruction formulae are derived. Different measurement schemes for measuring phase space observables are considered. Special emphasis is given to the quantum optical eight-port homodyne detection scheme and, in particular, on the effect of non-unit detector efficiencies on the measured observable. It is shown that the informational completeness of the observable does not depend on the efficiencies. As a related problem, the possibility of reconstructing the position and momentum distributions from the marginal statistics of a phase space observable is considered. It is shown that informational completeness for the phase space observable is neither necessary nor sufficient for this procedure. Two methods for determining the distributions from the marginal statistics are presented. Finally, two alternative methods for determining the state are considered. Some of their shortcomings when compared to the phase space method are discussed.
Resumo:
The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.
Resumo:
Selostus: Glysiinibetaiinilla suoritetun lehvästöruiskutuken vaikutus perunan rupisuuteen
Resumo:
Selostus: Kasvintuotannon ilmasto-olosuhteet Pohjoismaissa