21 resultados para Strong Fuzzy Negations
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Due to the large number of characteristics, there is a need to extract the most relevant characteristicsfrom the input data, so that the amount of information lost in this way is minimal, and the classification realized with the projected data set is relevant with respect to the original data. In order to achieve this feature extraction, different statistical techniques, as well as the principal components analysis (PCA) may be used. This thesis describes an extension of principal components analysis (PCA) allowing the extraction ofa finite number of relevant features from high-dimensional fuzzy data and noisy data. PCA finds linear combinations of the original measurement variables that describe the significant variation in the data. The comparisonof the two proposed methods was produced by using postoperative patient data. Experiment results demonstrate the ability of using the proposed two methods in complex data. Fuzzy PCA was used in the classificationproblem. The classification was applied by using the similarity classifier algorithm where total similarity measures weights are optimized with differential evolution algorithm. This thesis presents the comparison of the classification results based on the obtained data from the fuzzy PCA.
Resumo:
Tutkimuksen päätavoitteena oli ymmärtää vahvojen brändien ja brändipääoman rakentamisprosessia, painottaen erityisesti sponsoroinnin roolia tässä prosessissa. Tutkimus suoritettiin laadullisena tutkimuksena, jossa käytettiintapaustutkimusmenetelmää. Tutkimuksen aineisto kerättiin suurimmista online artikkelitietokannoista sekä kolmesta henkilökohtaisesta haastattelusta case-yrityksen edustajien kanssa. Tutkimuksen teoreettisen perustan muodosti brändipääoma-käsite ja sen osa-alueet, näiden liittyminen vahvoihin brändeihin ja brändien rakentamiseen, sekä sponsoroinnin strateginen käyttö brändien rakentamisessa. Lisäksi tutkimuksen empiirinen perusta arvio ja testasi näitä oletuksia ja aikaisemmin käsiteltyjä teorioita case-brändi Battery energiajuoman valossa. Tutkimus osoitti, että nykypäivänä kovan kilpailun markkinointiympäristössä, sponsorointi edustaa vaihtoehtoista tapaa rakentaa vahvoja, omalaatuisia ja suotuisia brändejä, joilla on korkea brändipääoma. Sponsoroinnista on tullut yhä tärkeämpi kommunikointiväline brändien rakentamisessa ja erityisesti siellä missä perinteiset menetelmät ovat muuttumassa tehottomiksi. Empiirisessä osassa selvisi, että sponsorointia on käytetty menestyksekkäästi strategisena keinona vahvan ja omalaatuisen Battery brändin ja sen korkean brändipääoman rakentamisessa.
Resumo:
This thesis presents a topological approach to studying fuzzy setsby means of modifier operators. Modifier operators are mathematical models, e.g., for hedges, and we present briefly different approaches to studying modifier operators. We are interested in compositional modifier operators, modifiers for short, and these modifiers depend on binary relations. We show that if a modifier depends on a reflexive and transitive binary relation on U, then there exists a unique topology on U such that this modifier is the closure operator in that topology. Also, if U is finite then there exists a lattice isomorphism between the class of all reflexive and transitive relations and the class of all topologies on U. We define topological similarity relation "≈" between L-fuzzy sets in an universe U, and show that the class LU/ ≈ is isomorphic with the class of all topologies on U, if U is finite and L is suitable. We consider finite bitopological spaces as approximation spaces, and we show that lower and upper approximations can be computed by means of α-level sets also in the case of equivalence relations. This means that approximations in the sense of Rough Set Theory can be computed by means of α-level sets. Finally, we present and application to data analysis: we study an approach to detecting dependencies of attributes in data base-like systems, called information systems.
Resumo:
Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.
Resumo:
Fuzzy subsets and fuzzy subgroups are basic concepts in fuzzy mathematics. We shall concentrate on fuzzy subgroups dealing with some of their algebraic, topological and complex analytical properties. Explorations are theoretical belonging to pure mathematics. One of our ideas is to show how widely fuzzy subgroups can be used in mathematics, which brings out the wealth of this concept. In complex analysis we focus on Möbius transformations, combining them with fuzzy subgroups in the algebraic and topological sense. We also survey MV spaces with or without a link to fuzzy subgroups. Spectral space is known in MV algebra. We are interested in its topological properties in MV-semilinear space. Later on, we shall study MV algebras in connection with Riemann surfaces. In fact, the Riemann surface as a concept belongs to complex analysis. On the other hand, Möbius transformations form a part of the theory of Riemann surfaces. In general, this work gives a good understanding how it is possible to fit together different fields of mathematics.
Resumo:
Avhandlingen behandlar temat territoriell autonomi ur ett globalt perspektiv. Syftet är dels att kartlägga de territoriella autonomierna i världen och dels att visa hur en ny metod som fuzzy-set kan användas inom ämnesområdet jämförande politik. Forskningsproblemet är att försöka finna de bakgrundsfaktorer som förklarar uppkomsten av territoriell autonomi som sådant. Territoriella autonomier ses som särlösningar inom stater. Dessa regioner har erhållit en specialställning i förhållande till andra regioner inom respektive stat och även i förhållande till centralmakten i övrigt. Regionerna kan därför ses som undantag inom det enhetliga federala, regionala eller decentraliserade systemet inom en viss stat ifråga. En kartläggning visar att det finns 65 specialregioner fördelade på 25 stater i världen. De flesta av dessa utgörs av öar. Resultaten visar att det finns två vägar vilka leder till territoriell autonomi i allmänhet. Den ena vägen är en kombination av etnisk särprägel och liten befolkningsmängd, medan den andra vägen utgörs av kombinationen av historiska orsaker och geografiskt avstånd. Båda vägar är lika giltiga och förutsättningen är en demokratisk miljö.
Resumo:
In this work a fuzzy linear system is used to solve Leontief input-output model with fuzzy entries. For solving this model, we assume that the consumption matrix from di erent sectors of the economy and demand are known. These assumptions heavily depend on the information obtained from the industries. Hence uncertainties are involved in this information. The aim of this work is to model these uncertainties and to address them by fuzzy entries such as fuzzy numbers and LR-type fuzzy numbers (triangular and trapezoidal). Fuzzy linear system has been developed using fuzzy data and it is solved using Gauss-Seidel algorithm. Numerical examples show the e ciency of this algorithm. The famous example from Prof. Leontief, where he solved the production levels for U.S. economy in 1958, is also further analyzed.
Resumo:
Since its introduction, fuzzy set theory has become a useful tool in the mathematical modelling of problems in Operations Research and many other fields. The number of applications is growing continuously. In this thesis we investigate a special type of fuzzy set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as possibility distributions) have been widely used in quantitative analysis in recent decades. In this work two measures of interactivity are defined for fuzzy numbers, the possibilistic correlation and correlation ratio. We focus on both the theoretical and practical applications of these new indices. The approach is based on the level-sets of the fuzzy numbers and on the concept of the joint distribution of marginal possibility distributions. The measures possess similar properties to the corresponding probabilistic correlation and correlation ratio. The connections to real life decision making problems are emphasized focusing on the financial applications. We extend the definitions of possibilistic mean value, variance, covariance and correlation to quasi fuzzy numbers and prove necessary and sufficient conditions for the finiteness of possibilistic mean value and variance. The connection between the concepts of probabilistic and possibilistic correlation is investigated using an exponential distribution. The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy Pay-Off method. This model for real option valuation is based on findings from earlier real option valuation models. We illustrate the use of number of different types of fuzzy numbers and mean value concepts with the method and provide a real life application.
Resumo:
In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.
Resumo:
In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task
Resumo:
Työssä käsitellään innovaatioprosessin ensimmäistä ”fuzzy front end” -vaihetta, jota työssä kutsutaan front end -vaiheeksi. Front end -vaihe on innovaatioprosessin alustava tutkimus ja suunnittelu vaihe ennen teknistä kehittämisvaihetta. Front end -vaihetta on tutkittu innovaatioprosessin osista vähiten, sekä se on useimmille yrityksillä sumea ja vaikeasti käsitettävä. Tutkimusten mukaan front end -vaiheen osaaminen on kuitenkin erittäin merkittävä tekijä yrityksen innovatiivisuudelle. Työssä avataan innovaatioprosessin sisältöä ja tavoitteita, sekä vertaillaan käytössä olevia malleja front end -vaiheen rakenteesta. Työssä selvitetään avaintekijöitä front end -vaiheen menestykseen ja tehokkuuteen. Lisäksi käsitellään johtamisen tekijöitä, jotka edesauttavat onnistumaan front end -vaiheessa.
Resumo:
A growing concern for organisations is how they should deal with increasing amounts of collected data. With fierce competition and smaller margins, organisations that are able to fully realize the potential in the data they collect can gain an advantage over the competitors. It is almost impossible to avoid imprecision when processing large amounts of data. Still, many of the available information systems are not capable of handling imprecise data, even though it can offer various advantages. Expert knowledge stored as linguistic expressions is a good example of imprecise but valuable data, i.e. data that is hard to exactly pinpoint to a definitive value. There is an obvious concern among organisations on how this problem should be handled; finding new methods for processing and storing imprecise data are therefore a key issue. Additionally, it is equally important to show that tacit knowledge and imprecise data can be used with success, which encourages organisations to analyse their imprecise data. The objective of the research conducted was therefore to explore how fuzzy ontologies could facilitate the exploitation and mobilisation of tacit knowledge and imprecise data in organisational and operational decision making processes. The thesis introduces both practical and theoretical advances on how fuzzy logic, ontologies (fuzzy ontologies) and OWA operators can be utilized for different decision making problems. It is demonstrated how a fuzzy ontology can model tacit knowledge which was collected from wine connoisseurs. The approach can be generalised and applied also to other practically important problems, such as intrusion detection. Additionally, a fuzzy ontology is applied in a novel consensus model for group decision making. By combining the fuzzy ontology with Semantic Web affiliated techniques novel applications have been designed. These applications show how the mobilisation of knowledge can successfully utilize also imprecise data. An important part of decision making processes is undeniably aggregation, which in combination with a fuzzy ontology provides a promising basis for demonstrating the benefits that one can retrieve from handling imprecise data. The new aggregation operators defined in the thesis often provide new possibilities to handle imprecision and expert opinions. This is demonstrated through both theoretical examples and practical implementations. This thesis shows the benefits of utilizing all the available data one possess, including imprecise data. By combining the concept of fuzzy ontology with the Semantic Web movement, it aspires to show the corporate world and industry the benefits of embracing fuzzy ontologies and imprecision.
Resumo:
The main goal of this study is to create a seamless chain of actions and more detailed structure to the front end of innovation to be able to increase the front end performance and finally to influence the renewal of companies. The main goal is achieved through by the new concept of an integrated model of early activities of FEI leading to a discovery of new elements of opportunities and the identification of new business and growth areas. The procedure offers one possible solution to a dynamic strategy formation process in innovation development cycle. In this study the front end of innovation is positioned between a strategy reviews and a concept creation with needed procedures, tools, and frameworks. The starting point of the study is that the origins of innovation are not well enough understood. The study focuses attention on the early activities of FEI. These first activities are conceptualized in order to find out successful innovation initiatives and strategic renewal agendas. A seamless chain of activities resulting in faster and more precise identification of opportunities and growth areas available on markets and inside companies is needed. Three case studies were conducted in order to study company views on available theory doctrine and to identify the first practical experiences and procedures in the beginning of the front end of innovation. Successful innovation requires focus on renewal in both internal and external directions and they should be carefully balanced for best results. Instead of inside-out mode of actions the studied companies have a strong outside-in thinking mode and they mainly co-develop their innovation initiatives in close proximity with customers i.e. successful companies are an integral part of customers business and success. Companies have tailor-made innovation processes combined their way of working linked to their business goals, and priorities of actual needs of transformation. The result of this study is a new modular FEI platform which can be configured by companies against their actual business needs and drivers. This platform includes new elements of FEI documenting an architecture presenting how the system components work together. The system is a conceptual approach from theories of emergent strategy formation, opportunity identification and creation, interpretation-analysis-experimentation triad and the present FEI theories. The platform includes new features compared to actual models of FEI. It allows managers to better understand the importance of FEI in the whole innovation development stage and FEI as a phase and procedure to discover and implement emergent strategy. An adaptable company rethinks and redirects strategy proactively from time to time. Different parts of the business model are changed to remove identified obstacles for growth and renewal which gives them avenues to find right reforms for renewal.