15 resultados para Stochastic Integral
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Since its discovery, chaos has been a very interesting and challenging topic of research. Many great minds spent their entire lives trying to give some rules to it. Nowadays, thanks to the research of last century and the advent of computers, it is possible to predict chaotic phenomena of nature for a certain limited amount of time. The aim of this study is to present a recently discovered method for the parameter estimation of the chaotic dynamical system models via the correlation integral likelihood, and give some hints for a more optimized use of it, together with a possible application to the industry. The main part of our study concerned two chaotic attractors whose general behaviour is diff erent, in order to capture eventual di fferences in the results. In the various simulations that we performed, the initial conditions have been changed in a quite exhaustive way. The results obtained show that, under certain conditions, this method works very well in all the case. In particular, it came out that the most important aspect is to be very careful while creating the training set and the empirical likelihood, since a lack of information in this part of the procedure leads to low quality results.
Resumo:
Decisions taken in modern organizations are often multi-dimensional, involving multiple decision makers and several criteria measured on different scales. Multiple Criteria Decision Making (MCDM) methods are designed to analyze and to give recommendations in this kind of situations. Among the numerous MCDM methods, two large families of methods are the multi-attribute utility theory based methods and the outranking methods. Traditionally both method families require exact values for technical parameters and criteria measurements, as well as for preferences expressed as weights. Often it is hard, if not impossible, to obtain exact values. Stochastic Multicriteria Acceptability Analysis (SMAA) is a family of methods designed to help in this type of situations where exact values are not available. Different variants of SMAA allow handling all types of MCDM problems. They support defining the model through uncertain, imprecise, or completely missing values. The methods are based on simulation that is applied to obtain descriptive indices characterizing the problem. In this thesis we present new advances in the SMAA methodology. We present and analyze algorithms for the SMAA-2 method and its extension to handle ordinal preferences. We then present an application of SMAA-2 to an area where MCDM models have not been applied before: planning elevator groups for high-rise buildings. Following this, we introduce two new methods to the family: SMAA-TRI that extends ELECTRE TRI for sorting problems with uncertain parameter values, and SMAA-III that extends ELECTRE III in a similar way. An efficient software implementing these two methods has been developed in conjunction with this work, and is briefly presented in this thesis. The thesis is closed with a comprehensive survey of SMAA methodology including a definition of a unified framework.
Resumo:
Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja metriikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luotettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryhmä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit. Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Kokeiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa mallien toimivuuteen sekä kuinka herkkiä mallit ovat syötetyn datan määrän muutoksille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän muutoksille.
Resumo:
The objective of this Bachelor's Thesis is to find out the role of social media in the B-to-B marketing environment of the information technology industry and to discover how IT-firms utilize social media as a part of their customer reference marketing. To reach the objectives the concepts of customer reference marketing and social media are determined. Customer reference marketing can be characterized as one of the most practically relevant but academically relatively overlooked ways in which a company can leverage its customers and delivered solutions and use them as references in its marketing activities. We will cover which external and internal functions customer references have, that contribute to the growth and performance of B-to-B firms. We also address the three mechanisms of customer reference marketing which are 'status transfer', 'validation through testimonials' and 'demonstration of experience and prior performance'. The concept of social media stands for social interaction and creation of user-based content which exclusively occurs through Internet. The social media are excellent tools for networking because of the fast and easy access, easy interaction and vast amount of multimedia attributes. The allocation of social media is determined. The case company helps clarify the specific characteristics of social media usage as part of customer-reference-marketing activities. For IT-firms the best channels to utilize social media in their customer reference marketing activities are publishing and distribution services of content and networking services.
Resumo:
In any decision making under uncertainties, the goal is mostly to minimize the expected cost. The minimization of cost under uncertainties is usually done by optimization. For simple models, the optimization can easily be done using deterministic methods.However, many models practically contain some complex and varying parameters that can not easily be taken into account using usual deterministic methods of optimization. Thus, it is very important to look for other methods that can be used to get insight into such models. MCMC method is one of the practical methods that can be used for optimization of stochastic models under uncertainty. This method is based on simulation that provides a general methodology which can be applied in nonlinear and non-Gaussian state models. MCMC method is very important for practical applications because it is a uni ed estimation procedure which simultaneously estimates both parameters and state variables. MCMC computes the distribution of the state variables and parameters of the given data measurements. MCMC method is faster in terms of computing time when compared to other optimization methods. This thesis discusses the use of Markov chain Monte Carlo (MCMC) methods for optimization of Stochastic models under uncertainties .The thesis begins with a short discussion about Bayesian Inference, MCMC and Stochastic optimization methods. Then an example is given of how MCMC can be applied for maximizing production at a minimum cost in a chemical reaction process. It is observed that this method performs better in optimizing the given cost function with a very high certainty.
Resumo:
Quite often, in the construction of a pulp mill involves establishing the size of tanks which will accommodate the material from the various processes in which case estimating the right tank size a priori would be vital. Hence, simulation of the whole production process would be worthwhile. Therefore, there is need to develop mathematical models that would mimic the behavior of the output from the various production units of the pulp mill to work as simulators. Markov chain models, Autoregressive moving average (ARMA) model, Mean reversion models with ensemble interaction together with Markov regime switching models are proposed for that purpose.
Resumo:
Stochastic approximation methods for stochastic optimization are considered. Reviewed the main methods of stochastic approximation: stochastic quasi-gradient algorithm, Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation stochastic approximation (SPSA) algorithm. Suggested the model and the solution of the retailer's profit optimization problem and considered an application of the SQG-algorithm for the optimization problems with objective functions given in the form of ordinary differential equation.
Resumo:
Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.
Stochastic particle models: mean reversion and burgers dynamics. An application to commodity markets
Resumo:
The aim of this study is to propose a stochastic model for commodity markets linked with the Burgers equation from fluid dynamics. We construct a stochastic particles method for commodity markets, in which particles represent market participants. A discontinuity in the model is included through an interacting kernel equal to the Heaviside function and its link with the Burgers equation is given. The Burgers equation and the connection of this model with stochastic differential equations are also studied. Further, based on the law of large numbers, we prove the convergence, for large N, of a system of stochastic differential equations describing the evolution of the prices of N traders to a deterministic partial differential equation of Burgers type. Numerical experiments highlight the success of the new proposal in modeling some commodity markets, and this is confirmed by the ability of the model to reproduce price spikes when their effects occur in a sufficiently long period of time.