22 resultados para Stability of nonlinear systems

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yksi keskeisimmistä tehtävistä matemaattisten mallien tilastollisessa analyysissä on mallien tuntemattomien parametrien estimointi. Tässä diplomityössä ollaan kiinnostuneita tuntemattomien parametrien jakaumista ja niiden muodostamiseen sopivista numeerisista menetelmistä, etenkin tapauksissa, joissa malli on epälineaarinen parametrien suhteen. Erilaisten numeeristen menetelmien osalta pääpaino on Markovin ketju Monte Carlo -menetelmissä (MCMC). Nämä laskentaintensiiviset menetelmät ovat viime aikoina kasvattaneet suosiotaan lähinnä kasvaneen laskentatehon vuoksi. Sekä Markovin ketjujen että Monte Carlo -simuloinnin teoriaa on esitelty työssä siinä määrin, että menetelmien toimivuus saadaan perusteltua. Viime aikoina kehitetyistä menetelmistä tarkastellaan etenkin adaptiivisia MCMC menetelmiä. Työn lähestymistapa on käytännönläheinen ja erilaisia MCMC -menetelmien toteutukseen liittyviä asioita korostetaan. Työn empiirisessä osuudessa tarkastellaan viiden esimerkkimallin tuntemattomien parametrien jakaumaa käyttäen hyväksi teoriaosassa esitettyjä menetelmiä. Mallit kuvaavat kemiallisia reaktioita ja kuvataan tavallisina differentiaaliyhtälöryhminä. Mallit on kerätty kemisteiltä Lappeenrannan teknillisestä yliopistosta ja Åbo Akademista, Turusta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software is a key component in many of our devices and products that we use every day. Most customers demand not only that their devices should function as expected but also that the software should be of high quality, reliable, fault tolerant, efficient, etc. In short, it is not enough that a calculator gives the correct result of a calculation, we want the result instantly, in the right form, with minimal use of battery, etc. One of the key aspects for succeeding in today's industry is delivering high quality. In most software development projects, high-quality software is achieved by rigorous testing and good quality assurance practices. However, today, customers are asking for these high quality software products at an ever-increasing pace. This leaves the companies with less time for development. Software testing is an expensive activity, because it requires much manual work. Testing, debugging, and verification are estimated to consume 50 to 75 per cent of the total development cost of complex software projects. Further, the most expensive software defects are those which have to be fixed after the product is released. One of the main challenges in software development is reducing the associated cost and time of software testing without sacrificing the quality of the developed software. It is often not enough to only demonstrate that a piece of software is functioning correctly. Usually, many other aspects of the software, such as performance, security, scalability, usability, etc., need also to be verified. Testing these aspects of the software is traditionally referred to as nonfunctional testing. One of the major challenges with non-functional testing is that it is usually carried out at the end of the software development process when most of the functionality is implemented. This is due to the fact that non-functional aspects, such as performance or security, apply to the software as a whole. In this thesis, we study the use of model-based testing. We present approaches to automatically generate tests from behavioral models for solving some of these challenges. We show that model-based testing is not only applicable to functional testing but also to non-functional testing. In its simplest form, performance testing is performed by executing multiple test sequences at once while observing the software in terms of responsiveness and stability, rather than the output. The main contribution of the thesis is a coherent model-based testing approach for testing functional and performance related issues in software systems. We show how we go from system models, expressed in the Unified Modeling Language, to test cases and back to models again. The system requirements are traced throughout the entire testing process. Requirements traceability facilitates finding faults in the design and implementation of the software. In the research field of model-based testing, many new proposed approaches suffer from poor or the lack of tool support. Therefore, the second contribution of this thesis is proper tool support for the proposed approach that is integrated with leading industry tools. We o er independent tools, tools that are integrated with other industry leading tools, and complete tool-chains when necessary. Many model-based testing approaches proposed by the research community suffer from poor empirical validation in an industrial context. In order to demonstrate the applicability of our proposed approach, we apply our research to several systems, including industrial ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imaging systems have developed latest years and developing is still continuing following years. Manufacturers of imaging systems give promises for the quality of the performance of imaging systems to advertise their products. Promises for the quality of the performance are often so good that they will not be tested in normal usage. The main target in this research is to evaluate the quality of the performance of two imaging systems: Scanner and CCD color camera. Optical measurement procedures were planned to evaluate the quality of imaging performances. Other target in this research is to evaluate calibration programs for the camera and the scanner. Measuring targets had to choose to evaluate the quality of imaging performances. Manufacturers have given definitions for targets. The third task in this research is to evaluate and consider how good measuring targets are.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microfibrillated cellulose (MFC) is known to enhance strength properties of paper. Improved strength usually means increased bonding which is strongly connected to dimensional instability of paper. Dimensional instability is due to changes in moisture content of paper; when paper is moistened it expands and when dried, it shrinks. Hygroexpansion is linked to end-use problems and excessive drying shrinkage consumes strength potential. Effective use of materials requires controlling of these phenomena. There isn’t yet data concerning dimensional stability of papers containing MFC which restricts wider use of MFC. Main objective of the work was to evaluate dimensional stability of wood-free paper containing different amounts of MFC. Sheets were dried with different methods to see how drying strains effected on drying shrinkage and hygroexpansion. Also tensile strength was measured to find out the effect of MFC. Results were compared to sheets containing kraft fines and in some test points cationic starch was used alongside with MFC. MFC increased the dimensional instability of freely dried sheets. As the amounts of MFC increased the effects on dimensional stability became more severe. However the fineness of MFC didn’t play any important role. Both hygroexpansion and drying shrinkage were decreased with cationic starch addition. Prevention of drying shrinkage over powered the effects of additives on hygroexpansion. Tensile strength improved up till 7 % addition amount which could be set as the upper limit of MFC addition when paper preparation and tensile strength are concerned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pluripotent cells have the potential to differentiate into all somatic cell types. As the adult human body is unable to regenerate various tissues, pluripotent cells provide an attractive source for regenerative medicine. Human embryonic stem cells (hESCs) can be isolated from blastocyst stage embryos and cultured in the laboratory environment. However, their use in regenerative medicine is restricted due to problems with immunosuppression by the host and ethical legislation. Recently, a new source of pluripotent cells was established via the direct reprogramming of somatic cells. These human induced pluripotent stem cells (hiPSCs) enable the production of patient specific cell types. However, numerous challenges, such as efficient reprogramming, optimal culture, directed differentiation, genetic stability and tumor risk need to be solved before the launch of therapeutic applications. The main objective of this thesis was to understand the unique properties of human pluripotent stem cells. The specific aims were to identify novel factors involved in maintaining pluripotency, characterize the effects of low oxygen culture on hESCs, and determine the high resolution changes in hESCs and hiPSCs during culture and reprogramming. As a result, the previously uncharacterized protein L1TD1 was determined to be specific for pluripotent cells and essential for the maintenance of pluripotency. The low oxygen culture supported undifferentiated growth and affected expression of stem cell associated transcripts. High resolution screening of hESCs identified a number of culture induced copy number variations and loss of heterozygosity changes. Further, screening of hiPSCs revealed that reprogramming induces high resolution alterations. The results obtained in this thesis have important implications for stem cell and cancer biology and the therapeutic potential of pluripotent cells.