8 resultados para Size structure
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
[Abstract]
Resumo:
Tämän diplomityön tavoitteena on selvittää Venäjän ruoan vähittäiskaupan rakenne ja sen tuleva kehitys. Tällä hetkellä se on yksi maailman nopeimmin kasvavista markkinoista. Kasvun syynä on korkea öljyn hinta, jokaon kumuloitunut ihmisten palkkoihin. Kuitenkin vaikka tulot kasvavat, ruokaan käytetty osuus tuloista on pysynyt suhteellisen vakaana. Kulutus on siis siirtymässä laadukkaampiin ja arvokkaampiin tuotteisiin Modernien kauppojen osuus markkinoista on vielä pieni, koska Venäjän vähittäiskauppasektori on yhä hajaantunut perinteisiin kauppaformaatteihin kuten kioskeihin, toreille ja pieniin ruokakauppoihin. Kauppaketjut ovat kuitenkin tulossa merkittävämmiksi. Suurin markkina-alue vähittäiskauppiaille on Moskova, mutta tällä hetkellä ketjut laajentavat toimintojaan nopeasti myös muille Venäjän alueille. Parhaat kasvunäkymät ovat alueilla, vaikka Moskovan markkinat eivät olekaan kyllästyneet. Tärkein kasvua rajoittava tekijä Moskovassa on rakennustonttien ja kiinteistöjen saatavuus. Vähittäiskauppamarkkinat lähestyvät kyllästymispistettä, josta seuraa markkinoiden konsolidaatio. Tämä prosessi on jo alkanut, mutta kovin paljon yritysostoja ei ole vielätehty. Toistaiseksi kauppaketjut ovat tyytyneet muodostamaan alliansseja. Ketjut pyrkivät parantamaan asemaansa hintaneuvotteluissa muodostamalla osto-alliansseja, luomalla omia brändejä ja käyttämällä alueellista laajentumista lyömäaseena. Jotta ruoan tuottaja pääsisi myös alueellisille markkinoille, on sen ehkä suostuttava myymään tuotteitaan edullisempaan hintaan. Tavarantoimittajat ovat vahvassa asemassa silloin, kun heillä on toimiva jakeluverkko, kyky JIT-toimituksiin,kunnollinen dokumentaatiokäytäntö, vahva brändi ja edullinen hinta. Ns. listausmaksun suuruus voi määrittää tuottajan tuotteilleen saaman hyllytilan koon.
Resumo:
To predict the capacity of the structure or the point which is followed by instability, calculation of the critical crack size is important. Structures usually contain several cracks but not necessarily all of these cracks lead to failure or reach the critical size. So, defining the harmful cracks or the crack size which is the most leading one to failure provides criteria for structure’s capacity at elevated temperature. The scope of this thesis was to calculate fracture parameters like stress intensity factor, the J integral and plastic and ultimate capacity of the structure to estimate critical crack size for this specific structure. Several three dimensional (3D) simulations using finite element method by Ansys program and boundary element method by Frank 3D program were carried out to calculate fracture parameters and results with the aid of laboratory tests (loaddisplacement curve, the J resistance curve and yield or ultimate stress) leaded to extract critical size of the crack. Two types of the fracture which is usually affected by temperature, Elastic and Elasti-Plastic fractures were simulated by performing several linear elastic and nonlinear elastic analyses. Geometry details of the weldment; flank angle and toe radius were also studied independently to estimate the location of crack initiation and simulate stress field in early stages of crack extension in structure. In this work also overview of the structure’s capacity in room temperature (20 ºC) was studied. Comparison of the results in different temperature (20 ºC and -40 ºC) provides a threshold of the structure’s behavior within the defined range.
Resumo:
Due to functional requirement of a structural detail brackets with and without scallop are frequently used in bridges, decks, ships and offshore structure. Scallops are designed to serve as passage way for fluids, to reduce weld length and plate distortions. Moreover, scallops are used to avoid intersection of two or more welds for the fact that there is the presence of inventible inherent initial crack except for full penetrated weld and the formation of multi-axial stress state at the weld intersection. Welding all around the scallop corner increase the possibility of brittle fracture even for the case the bracket is not loaded by primary load. Avoiding of scallop will establish an initial crack in the corner if bracket is welded by fillet welds. If the two weld run pass had crossed, this would have given a 3D residual stress situation. Therefore the presences and absence of scallop necessitates the 3D FEA fatigue resistance of both types of brackets using effective notch stress approach ( ). FEMAP 10.1 with NX NASTRAN was used for the 3D FEA. The first and main objective of this research was to investigate and compare the fatigue resistance of brackets with and without scallop. The secondary goal was the fatigue design of scallops in case they cannot be avoided for some reason. The fatigue resistance for both types of brackets was determined based on approach using 1 mm fictitiously rounded radius based on IIW recommendation. Identical geometrical, boundary and loading conditions were used for the determination and comparison of fatigue resistance of both types of brackets using linear 3D FEA. Moreover the size effect of bracket length was also studied using 2D SHELL element FEA. In the case of brackets with scallop the flange plate weld toe at the corner of the scallop was found to exhibit the highest and made the flange plate weld toe critical for fatigue failure. Whereas weld root and weld toe at the weld intersections were the highly stressed location for brackets without scallop. Thus weld toe for brackets with scallop, and weld root and weld toe for brackets without scallop were found to be the critical area for fatigue failure. Employing identical parameters on both types of brackets, brackets without scallop had the highest except for full penetrated weld. Furthermore the fatigue resistance of brackets without scallop was highly affected by the lack of weld penetration length and it was found out that decreased as the weld penetration was increased. Despite the fact that the very presence of scallop reduces the stiffness and also same time induce stress concentration, based on the 3D FEA it is worth concluding that using scallop provided better fatigue resistance when both types of brackets were fillet welded. However brackets without scallop had the highest fatigue resistance when full penetration weld was used. This thesis also showed that weld toe for brackets with scallop was the only highly stressed area unlike brackets without scallop in which both weld toe and weld root were the critical locations for fatigue failure when different types of boundary conditions were used. Weld throat thickness, plate thickness, scallop radius, lack of weld penetration length, boundary condition and weld quality affected the fatigue resistance of both types of brackets. And as a result, bracket design procedure, especially welding quality and post weld treatment techniques significantly affect the fatigue resistance of both type of brackets.
Resumo:
The superconducting gap is a basic character of a superconductor. While the cuprates and conventional phonon-mediated superconductors are characterized by distinct d- and s-wave pairing symmetries with nodal and nodeless gap distributions respectively, the superconducting gap distributions in iron-based superconductors are rather diversified. While nodeless gap distributions have been directly observed in Ba1–xKxFe2As2, BaFe2–xCoxAs2, LiFeAs, KxFe2–ySe2, and FeTe1–xSex, the signatures of a nodal superconducting gap have been reported in LaOFeP, LiFeP, FeSe, KFe2As2, BaFe2–xRuxAs2, and BaFe2(As1–xPx)2. Due to the multiplicity of the Fermi surface in these compounds s± and d pairing states can be both nodeless and nodal. A nontrivial orbital structure of the order parameter, in particular the presence of the gap nodes, leads to effects in which the disorder is much richer in dx2–y2-wave superconductors than in conventional materials. In contrast to the s-wave case, the Anderson theorem does not work, and nonmagnetic impurities exhibit a strong pair-breaking influence. In addition, a finite concentration of disorder produces a nonzero density of quasiparticle states at zero energy, which results in a considerable modification of the thermodynamic and transport properties at low temperatures. The influence of order parameter symmetry on the vortex core structure in iron-based pnictide and chalcogenide superconductors has been investigated in the framework of quasiclassical Eilenberger equations. The main results of the thesis are as follows. The vortex core characteristics, such as, cutoff parameter, ξh, and core size, ξ2, determined as the distance at which density of the vortex supercurrent reaches its maximum, are calculated in wide temperature, impurity scattering rate, and magnetic field ranges. The cutoff parameter, ξh(B; T; Г), determines the form factor of the flux-line lattice, which can be obtained in _SR, NMR, and SANS experiments. A comparison among the applied pairing symmetries is done. In contrast to s-wave systems, in dx2–y2-wave superconductors, ξh/ξc2 always increases with the scattering rate Г. Field dependence of the cutoff parameter affects strongly on the second moment of the magnetic field distributions, resulting in a significant difference with nonlocal London theory. It is found that normalized ξ2/ξc2(B/Bc2) dependence is increasing with pair-breaking impurity scattering (interband scattering for s±-wave and intraband impurity scattering for d-wave superconductors). Here, ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field Bc2 = Φ0/2πξ2 c2, where Φ0 is a flux quantum. Two types of ξ2/ξc2 magnetic field dependences are obtained for s± superconductors. It has a minimum at low temperatures and small impurity scattering transforming in monotonously decreasing function at strong scattering and high temperatures. The second kind of this dependence has been also found for d-wave superconductors at intermediate and high temperatures. In contrast, impurity scattering results in decreasing of ξ2/ξc2(B/Bc2) dependence in s++ superconductors. A reasonable agreement between calculated ξh/ξc2 values and those obtained experimentally in nonstoichiometric BaFe2–xCoxAs2 (μSR) and stoichiometric LiFeAs (SANS) was found. The values of ξh/ξc2 are much less than one in case of the first compound and much more than one for the other compound. This is explained by different influence of two factors: the value of impurity scattering rate and pairing symmetry.
Resumo:
Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs) and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found throughout the plant kingdom. On one hand, tannins may cause harmful nutritional effects on herbivores, for example insects, and hence they work as plants’ defense against plant-eating animals. On the other hand, they may affect positively some herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-inflammatory or anticarcinogenic activities. This thesis focuses on understanding the bioactivity of plant tannins, their anthelmintic properties and the tools used for the qualitative and quantitative analysis of this endless source of structural diversity. The first part of the experimental work focused on the development of ultra-high performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS) based methods for the rapid fingerprint analysis of bioactive polyphenols, especially tannins. In the second part of the experimental work the in vitro activity of isolated and purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching and larval motility of two larval developmental stages, L1 and L2, of a common ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear relationships between the HT structure and the anthelmintic activity. The activity of the studied compounds depended on many structural features, including size, functional groups present in the structure, and the structural rigidness. To further understand tannin bioactivity on a molecular level, the interaction between bovine serum albumin (BSA), and seven HTs and epigallocatechin gallate was examined. The objective was to define the effect of pH on the formation on tannin–protein complexes and to evaluate the stability of the formed complexes by gel electrophoresis and MALDI-TOF-MS. The results indicated that more basic pH values had a stabilizing effect on the tannin–protein complexes and that the tannin oxidative activity was directly linked with their tendency to form covalently stabilized complexes with BSA at increased pH.
Resumo:
One of the most disputable matters in the theory of finance has been the theory of capital structure. The seminal contributions of Modigliani and Miller (1958, 1963) gave rise to a multitude of studies and debates. Since the initial spark, the financial literature has offered two competing theories of financing decision: the trade-off theory and the pecking order theory. The trade-off theory suggests that firms have an optimal capital structure balancing the benefits and costs of debt. The pecking order theory approaches the firm capital structure from information asymmetry perspective and assumes a hierarchy of financing, with firms using first internal funds, followed by debt and as a last resort equity. This thesis analyses the trade-off and pecking order theories and their predictions on a panel data consisting 78 Finnish firms listed on the OMX Helsinki stock exchange. Estimations are performed for the period 2003–2012. The data is collected from Datastream system and consists of financial statement data. A number of capital structure characteristics are identified: firm size, profitability, firm growth opportunities, risk, asset tangibility and taxes, speed of adjustment and financial deficit. A regression analysis is used to examine the effects of the firm characteristics on capitals structure. The regression models were formed based on the relevant theories. The general capital structure model is estimated with fixed effects estimator. Additionally, dynamic models play an important role in several areas of corporate finance, but with the combination of fixed effects and lagged dependent variables the model estimation is more complicated. A dynamic partial adjustment model is estimated using Arellano and Bond (1991) first-differencing generalized method of moments, the ordinary least squares and fixed effects estimators. The results for Finnish listed firms show support for the predictions of profitability, firm size and non-debt tax shields. However, no conclusive support for the pecking-order theory is found. However, the effect of pecking order cannot be fully ignored and it is concluded that instead of being substitutes the trade-off and pecking order theory appear to complement each other. For the partial adjustment model the results show that Finnish listed firms adjust towards their target capital structure with a speed of 29% a year using book debt ratio.