6 resultados para Single Crossing Property Marginal Rate of Substitution IdentityDiscrete Pooling.
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tämän tutkielman tavoitteena on selvittää mitkä riskitekijät vaikuttavat osakkeiden tuottoihin. Arvopapereina käytetään kuutta portfoliota, jotka ovat jaoteltu markkina-arvon mukaan. Aikaperiodi on vuoden 1987 alusta vuoden 2004 loppuun. Malleina käytetään pääomamarkkinoiden hinnoittelumallia, arbitraasihinnoitteluteoriaa sekä kulutuspohjaista pääomamarkkinoiden hinnoittelumallia. Riskifaktoreina kahteen ensimmäiseen malliin käytetään markkinariskiä sekä makrotaloudellisia riskitekijöitä. Kulutuspohjaiseen pääomamarkkinoiden hinnoinoittelumallissa keskitytään estimoimaan kuluttajien riskitottumuksia sekä diskonttaustekijää, jolla kuluttaja arvostavat tulevaisuuden kulutusta. Tämä työ esittelee momenttiteorian, jolla pystymme estimoimaan lineaarisia sekä epälineaarisia yhtälöitä. Käytämme tätä menetelmää testaamissamme malleissa. Yhteenvetona tuloksista voidaan sanoa, että markkinabeeta onedelleen tärkein riskitekijä, mutta löydämme myös tukea makrotaloudellisille riskitekijöille. Kulutuspohjainen mallimme toimii melko hyvin antaen teoreettisesti hyväksyttäviä arvoja.
Resumo:
In recent years, the network vulnerability to natural hazards has been noticed. Moreover, operating on the limits of the network transmission capabilities have resulted in major outages during the past decade. One of the reasons for operating on these limits is that the network has become outdated. Therefore, new technical solutions are studied that could provide more reliable and more energy efficient power distributionand also a better profitability for the network owner. It is the development and price of power electronics that have made the DC distribution an attractive alternative again. In this doctoral thesis, one type of a low-voltage DC distribution system is investigated. Morespecifically, it is studied which current technological solutions, used at the customer-end, could provide better power quality for the customer when compared with the current system. To study the effect of a DC network on the customer-end power quality, a bipolar DC network model is derived. The model can also be used to identify the supply parameters when the V/kW ratio is approximately known. Although the model provides knowledge of the average behavior, it is shown that the instantaneous DC voltage ripple should be limited. The guidelines to choose an appropriate capacitance value for the capacitor located at the input DC terminals of the customer-end are given. Also the structure of the customer-end is considered. A comparison between the most common solutions is made based on their cost, energy efficiency, and reliability. In the comparison, special attention is paid to the passive filtering solutions since the filter is considered a crucial element when the lifetime expenses are determined. It is found out that the filter topology most commonly used today, namely the LC filter, does not provide economical advantage over the hybrid filter structure. Finally, some of the typical control system solutions are introduced and their shortcomings are presented. As a solution to the customer-end voltage regulation problem, an observer-based control scheme is proposed. It is shown how different control system structures affect the performance. The performance meeting the requirements is achieved by using only one output measurement, when operating in a rigid network. Similar performance can be achieved in a weak grid by DC voltage measurement. An additional improvement can be achieved when an adaptive gain scheduling-based control is introduced. As a conclusion, the final power quality is determined by a sum of various factors, and the thesis provides the guidelines for designing the system that improves the power quality experienced by the customer.
Resumo:
APROS (Advanced Process Simulation Environment) is a computer simulation program developed to simulate thermal hydraulic processes in nuclear and conventional power plants. Earlier research at VTT Technological Research Centre of Finland had found the current version of APROS to produce inaccurate simulation results for a certain case of loop seal clearing. The objective of this Master’s thesis is to find and implement an alternative method for calculating the rate of stratification in APROS, which was found to be the reason for the inaccuracies. Brief literature study was performed and a promising candidate for the new method was found. The new method was implemented into APROS and tested against experiments and simulations from two test facilities and the current version of APROS. Simulation results with the new version were partially conflicting; in some cases the new method was more accurate than the current version, in some the current method was better. Overall, the new method can be assessed as an improvement.
Resumo:
I mars 2003 certifierades en finländsk advokatbyrå av den Europeiska kommissionen som den bästa i Europa inom specialkategorin livslångt lärande. Advokatbyrån var överraskad över utnämningen emedan de inte aktivt och/eller medvetet implementerat eller utövat en livslångt lärandestrategi i sin verksamhet bland sin personal. Byrån deltog i en tävling om bästa arbetsplats i Europa ("Best workplaces in Europe 2003") utan att vara medveten om den Europeiska kommissionens special- kategorier. Emedan advokatbyrån inte medvetet implementerat en livslångt lärandestrategi bland sin personal formar aktörerna, vars uppfattning och prat denna avhandling handlar om, sina föreställningar och sitt prat om livslångt lärande efter utnämningen. Översättningsprocessen av en idé utlöses sålunda i denna studie av en extern händelse. I sin avhandling beskriver Annica Isacsson hur och varför en idé (livslångt lärande) föds (på nytt) på en institutionell nivå, hur idén reser och förändras i en process av översättning, hur idén landar i två organisationer samt hur idén om livslångt lärande uppfattas och beskrivs av lokala aktörer i två olika organisationer. Fokus i studien ligger sålunda på enskilda aktörers uppfattning om ett kontroversiellt koncept i en lokal kontext. Teoretiskt möts och sammanlänkas teori om livslångt lärande, sociokulturella teorier om lärande och teorier om organisatoriskt lärande. Isacssons avhandling visar på hur livslångt lärande inte enbart, i en organisatorisk kontext, handlar om individuell kompetensutveckling utan också om organisatoriskt lärande i vilken lärande av andra organisationsmedlemmar och organisationer ingår. Studien visar vidare på hur enskilda aktörers prat påverkas av det institutionella fältet och av den tidsanda inom vilken diskursen livslångt lärande föds, rör sig och ingår.
Resumo:
Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.