71 resultados para Simulation-based methods

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual environments and real-time simulators (VERS) are becoming more and more important tools in research and development (R&D) process of non-road mobile machinery (NRMM). The virtual prototyping techniques enable faster and more cost-efficient development of machines compared to use of real life prototypes. High energy efficiency has become an important topic in the world of NRMM because of environmental and economic demands. The objective of this thesis is to develop VERS based methods for research and development of NRMM. A process using VERS for assessing effects of human operators on the life-cycle efficiency of NRMM was developed. Human in the loop simulations are ran using an underground mining loader to study the developed process. The simulations were ran in the virtual environment of the Laboratory of Intelligent Machines of Lappeenranta University of Technology. A physically adequate real-time simulation model of NRMM was shown to be reliable and cost effective in testing of hardware components by the means of hardware-in-the-loop (HIL) simulations. A control interface connecting integrated electro-hydraulic energy converter (IEHEC) with virtual simulation model of log crane was developed. IEHEC consists of a hydraulic pump-motor and an integrated electrical permanent magnet synchronous motorgenerator. The results show that state of the art real-time NRMM simulators are capable to solve factors related to energy consumption and productivity of the NRMM. A significant variation between the test drivers is found. The results show that VERS can be used for assessing human effects on the life-cycle efficiency of NRMM. HIL simulation responses compared to that achieved with conventional simulation method demonstrate the advances and drawbacks of various possible interfaces between the simulator and hardware part of the system under study. Novel ideas for arranging the interface are successfully tested and compared with the more traditional one. The proposed process for assessing the effects of operators on the life-cycle efficiency will be applied for wider group of operators in the future. Driving styles of the operators can be analysed statistically from sufficient large result data. The statistical analysis can find the most life-cycle efficient driving style for the specific environment and machinery. The proposed control interface for HIL simulation need to be further studied. The robustness and the adaptation of the interface in different situations must be verified. The future work will also include studying the suitability of the IEHEC for different working machines using the proposed HIL simulation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metaheuristic methods have become increasingly popular approaches in solving global optimization problems. From a practical viewpoint, it is often desirable to perform multimodal optimization which, enables the search of more than one optimal solution to the task at hand. Population-based metaheuristic methods offer a natural basis for multimodal optimization. The topic has received increasing interest especially in the evolutionary computation community. Several niching approaches have been suggested to allow multimodal optimization using evolutionary algorithms. Most global optimization approaches, including metaheuristics, contain global and local search phases. The requirement to locate several optima sets additional requirements for the design of algorithms to be effective in both respects in the context of multimodal optimization. In this thesis, several different multimodal optimization algorithms are studied in regard to how their implementation in the global and local search phases affect their performance in different problems. The study concentrates especially on variations of the Differential Evolution algorithm and their capabilities in multimodal optimization. To separate the global and local search search phases, three multimodal optimization algorithms are proposed, two of which hybridize the Differential Evolution with a local search method. As the theoretical background behind the operation of metaheuristics is not generally thoroughly understood, the research relies heavily on experimental studies in finding out the properties of different approaches. To achieve reliable experimental information, the experimental environment must be carefully chosen to contain appropriate and adequately varying problems. The available selection of multimodal test problems is, however, rather limited, and no general framework exists. As a part of this thesis, such a framework for generating tunable test functions for evaluating different methods of multimodal optimization experimentally is provided and used for testing the algorithms. The results demonstrate that an efficient local phase is essential for creating efficient multimodal optimization algorithms. Adding a suitable global phase has the potential to boost the performance significantly, but the weak local phase may invalidate the advantages gained from the global phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New luminometric particle-based methods were developed to quantify protein and to count cells. The developed methods rely on the interaction of the sample with nano- or microparticles and different principles of detection. In fluorescence quenching, timeresolved luminescence resonance energy transfer (TR-LRET), and two-photon excitation fluorescence (TPX) methods, the sample prevents the adsorption of labeled protein to the particles. Depending on the system, the addition of the analyte increases or decreases the luminescence. In the dissociation method, the adsorbed protein protects the Eu(III) chelate on the surface of the particles from dissociation at a low pH. The experimental setups are user-friendly and rapid and do not require hazardous test compounds and elevated temperatures. The sensitivity of the quantification of protein (from 40 to 500 pg bovine serum albumin in a sample) was 20-500-fold better than in most sensitive commercial methods. The quenching method exhibited low protein-to-protein variability and the dissociation method insensitivity to the assay contaminants commonly found in biological samples. Less than ten eukaryotic cells were detected and quantified with all the developed methods under optimized assay conditions. Furthermore, two applications, the method for detection of the aggregation of protein and the cell viability test, were developed by utilizing the TR-LRET method. The detection of the aggregation of protein was allowed at a more than 10,000 times lower concentration, 30 μg/L, compared to the known methods of UV240 absorbance and dynamic light scattering. The TR-LRET method was combined with a nucleic acid assay with cell-impermeable dye to measure the percentage of dead cells in a single tube test with cell counts below 1000 cells/tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation and warehousing are large and growing sectors in the society, and their efficiency is of high importance. Transportation also has a large share of global carbondioxide emissions, which are one the leading causes of anthropogenic climate warming. Various countries have agreed to decrease their carbon emissions according to the Kyoto protocol. Transportation is the only sector where emissions have steadily increased since the 1990s, which highlights the importance of transportation efficiency. The efficiency of transportation and warehousing can be improved with the help of simulations, but models alone are not sufficient. This research concentrates on the use of simulations in decision support systems. Three main simulation approaches are used in logistics: discrete-event simulation, systems dynamics, and agent-based modeling. However, individual simulation approaches have weaknesses of their own. Hybridization (combining two or more approaches) can improve the quality of the models, as it allows using a different method to overcome the weakness of one method. It is important to choose the correct approach (or a combination of approaches) when modeling transportation and warehousing issues. If an inappropriate method is chosen (this can occur if the modeler is proficient in only one approach or the model specification is not conducted thoroughly), the simulation model will have an inaccurate structure, which in turn will lead to misleading results. This issue can further escalate, as the decision-maker may assume that the presented simulation model gives the most useful results available, even though the whole model can be based on a poorly chosen structure. In this research it is argued that simulation- based decision support systems need to take various issues into account to make a functioning decision support system. The actual simulation model can be constructed using any (or multiple) approach, it can be combined with different optimization modules, and there needs to be a proper interface between the model and the user. These issues are presented in a framework, which simulation modelers can use when creating decision support systems. In order for decision-makers to fully benefit from the simulations, the user interface needs to clearly separate the model and the user, but at the same time, the user needs to be able to run the appropriate runs in order to analyze the problems correctly. This study recommends that simulation modelers should start to transfer their tacit knowledge to explicit knowledge. This would greatly benefit the whole simulation community and improve the quality of simulation-based decision support systems as well. More studies should also be conducted by using hybrid models and integrating simulations with Graphical Information Systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combating climate change is one of the key tasks of humanity in the 21st century. One of the leading causes is carbon dioxide emissions due to usage of fossil fuels. Renewable energy sources should be used instead of relying on oil, gas, and coal. In Finland a significant amount of energy is produced using wood. The usage of wood chips is expected to increase in the future significantly, over 60 %. The aim of this research is to improve understanding over the costs of wood chip supply chains. This is conducted by utilizing simulation as the main research method. The simulation model utilizes both agent-based modelling and discrete event simulation to imitate the wood chip supply chain. This thesis concentrates on the usage of simulation based decision support systems in strategic decision-making. The simulation model is part of a decision support system, which connects the simulation model to databases but also provides a graphical user interface for the decisionmaker. The main analysis conducted with the decision support system concentrates on comparing a traditional supply chain to a supply chain utilizing specialized containers. According to the analysis, the container supply chain is able to have smaller costs than the traditional supply chain. Also, a container supply chain can be more easily scaled up due to faster emptying operations. Initially the container operations would only supply part of the fuel needs of a power plant and it would complement the current supply chain. The model can be expanded to include intermodal supply chains as due to increased demand in the future there is not enough wood chips located close to current and future power plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational model-based simulation methods were developed for the modelling of bioaffinity assays. Bioaffinity-based methods are widely used to quantify a biological substance in biological research, development and in routine clinical in vitro diagnostics. Bioaffinity assays are based on the high affinity and structural specificity between the binding biomolecules. The simulation methods developed are based on the mechanistic assay model, which relies on the chemical reaction kinetics and describes the forming of a bound component as a function of time from the initial binding interaction. The simulation methods were focused on studying the behaviour and the reliability of bioaffinity assay and the possibilities the modelling methods of binding reaction kinetics provide, such as predicting assay results even before the binding reaction has reached equilibrium. For example, a rapid quantitative result from a clinical bioaffinity assay sample can be very significant, e.g. even the smallest elevation of a heart muscle marker reveals a cardiac injury. The simulation methods were used to identify critical error factors in rapid bioaffinity assays. A new kinetic calibration method was developed to calibrate a measurement system by kinetic measurement data utilizing only one standard concentration. A nodebased method was developed to model multi-component binding reactions, which have been a challenge to traditional numerical methods. The node-method was also used to model protein adsorption as an example of nonspecific binding of biomolecules. These methods have been compared with the experimental data from practice and can be utilized in in vitro diagnostics, drug discovery and in medical imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paperin pinnan karheus on yksi paperin laatukriteereistä. Sitä mitataan fyysisestipaperin pintaa mittaavien laitteiden ja optisten laitteiden avulla. Mittaukset vaativat laboratorioolosuhteita, mutta nopeammille, suoraan linjalla tapahtuville mittauksilla olisi tarvetta paperiteollisuudessa. Paperin pinnan karheus voidaan ilmaista yhtenä näytteelle kohdistuvana karheusarvona. Tässä työssä näyte on jaettu merkitseviin alueisiin, ja jokaiselle alueelle on laskettu erillinen karheusarvo. Karheuden mittaukseen on käytetty useita menetelmiä. Yleisesti hyväksyttyä tilastollista menetelmää on käytetty tässä työssä etäisyysmuunnoksen lisäksi. Paperin pinnan karheudenmittauksessa on ollut tarvetta jakaa analysoitava näyte karheuden perusteella alueisiin. Aluejaon avulla voidaan rajata näytteestä selvästi karheampana esiintyvät alueet. Etäisyysmuunnos tuottaa alueita, joita on analysoitu. Näistä alueista on muodostettu yhtenäisiä alueita erilaisilla segmentointimenetelmillä. PNN -menetelmään (Pairwise Nearest Neighbor) ja naapurialueiden yhdistämiseen perustuvia algoritmeja on käytetty.Alueiden jakamiseen ja yhdistämiseen perustuvaa lähestymistapaa on myös tarkasteltu. Segmentoitujen kuvien validointi on yleensä tapahtunut ihmisen tarkastelemana. Tämän työn lähestymistapa on verrata yleisesti hyväksyttyä tilastollista menetelmää segmentoinnin tuloksiin. Korkea korrelaatio näiden tulosten välillä osoittaa onnistunutta segmentointia. Eri kokeiden tuloksia on verrattu keskenään hypoteesin testauksella. Työssä on analysoitu kahta näytesarjaa, joidenmittaukset on suoritettu OptiTopolla ja profilometrillä. Etäisyysmuunnoksen aloitusparametrit, joita muutettiin kokeiden aikana, olivat aloituspisteiden määrä ja sijainti. Samat parametrimuutokset tehtiin kaikille algoritmeille, joita käytettiin alueiden yhdistämiseen. Etäisyysmuunnoksen jälkeen korrelaatio oli voimakkaampaa profilometrillä mitatuille näytteille kuin OptiTopolla mitatuille näytteille. Segmentoiduilla OptiTopo -näytteillä korrelaatio parantui voimakkaammin kuin profilometrinäytteillä. PNN -menetelmän tuottamilla tuloksilla korrelaatio oli paras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of coating layer properties is becoming increasingly important as a result of an emerging demand for novel coated paper-based products and an increasing popularity of new coating application methods. The governing mechanisms of microstructure formation dynamics during consolidation and drying are nevertheless, still poorly understood. Some of the difficulties encountered by experimental methods can be overcome by the utilisation of numerical modelling and simulation-based studies of the consolidation process. The objective of this study was to improve the fundamental understanding of pigment coating consolidation and structure formation mechanisms taking place on the microscopic level. Furthermore, it is aimed to relate the impact of process and suspension properties to the microstructure of the coating layer. A mathematical model based on a modified Stokesian dynamics particle simulation technique was developed and applied in several studies of consolidation-related phenomena. The model includes particle-particle and particle-boundary hydrodynamics, colloidal interactions, Born repulsion, and a steric repulsion model. The Brownian motion and a free surface model were incorporated to enable the specific investigation of consolidation and drying. Filter cake stability was simulated in various particle systems, and subjected to a range of base substrate absorption rates and system temperatures. The stability of the filter cake was primarily affected by the absorption rate and size of particles. Temperature was also shown to have an influence. The consolidation of polydisperse systems, with varying wet coating thicknesses, was studied using imposed pilot trial and model-based drying conditions. The results show that drying methods have a clear influence on the microstructure development, on small particle distributions in the coating layer and also on the mobility of particles during consolidation. It is concluded that colloidal properties can significantly impact coating layer shrinkage as well as the internal solids concentration profile. Visualisations of particle system development in time and comparison of systems at different conditions are useful in illustrating coating layer structure formation mechanisms. The results aid in understanding the underlying mechanisms of pigment coating layer consolidation. Guidance is given regarding the relationship between coating process conditions and internal coating slurry properties and their effects on the microstructure of the coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid handling systems account for a significant share of the global consumption of electrical energy. They also suffer from problems, which reduce their energy efficiency and increase life-cycle costs. Detecting or predicting these problems in time can make fluid handling systems more environmentally and economically sustainable to operate. In this Master’s Thesis, significant problems in fluid systems were studied and possibilities to develop variable-speed-drive-based detection methods for them was discussed. A literature review was conducted to find significant problems occurring in fluid handling systems containing pumps, fans and compressors. To find case examples for evaluating the feasibility of variable-speed-drive-based methods, queries were sent to industrial companies. As a result of this, the possibility to detect heat exchanger fouling with a variable-speed drive was analysed with data from three industrial cases. It was found that a mass flow rate estimate, which can be generated with a variable speed drive, can be used together with temperature measurements to monitor a heat exchanger’s thermal performance. Secondly, it was found that the fouling-related increase in the pressure drop of a heat exchanger can be monitored with a variable speed drive. Lastly, for systems where the flow device is speed controlled with by a pressure measurement, it was concluded that increasing rotational speed can be interpreted as progressing fouling in the heat exchanger.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Decisions taken in modern organizations are often multi-dimensional, involving multiple decision makers and several criteria measured on different scales. Multiple Criteria Decision Making (MCDM) methods are designed to analyze and to give recommendations in this kind of situations. Among the numerous MCDM methods, two large families of methods are the multi-attribute utility theory based methods and the outranking methods. Traditionally both method families require exact values for technical parameters and criteria measurements, as well as for preferences expressed as weights. Often it is hard, if not impossible, to obtain exact values. Stochastic Multicriteria Acceptability Analysis (SMAA) is a family of methods designed to help in this type of situations where exact values are not available. Different variants of SMAA allow handling all types of MCDM problems. They support defining the model through uncertain, imprecise, or completely missing values. The methods are based on simulation that is applied to obtain descriptive indices characterizing the problem. In this thesis we present new advances in the SMAA methodology. We present and analyze algorithms for the SMAA-2 method and its extension to handle ordinal preferences. We then present an application of SMAA-2 to an area where MCDM models have not been applied before: planning elevator groups for high-rise buildings. Following this, we introduce two new methods to the family: SMAA-TRI that extends ELECTRE TRI for sorting problems with uncertain parameter values, and SMAA-III that extends ELECTRE III in a similar way. An efficient software implementing these two methods has been developed in conjunction with this work, and is briefly presented in this thesis. The thesis is closed with a comprehensive survey of SMAA methodology including a definition of a unified framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tämän tutkimustyön kohteena on TietoEnator Oy:n kehittämän Fenix-tietojärjestelmän kapasiteettitarpeen ennustaminen. Työn tavoitteena on tutustua Fenix-järjestelmän eri osa-alueisiin, löytää tapa eritellä ja mallintaa eri osa-alueiden vaikutus järjestelmän kuormitukseen ja selvittää alustavasti mitkä parametrit vaikuttavat kyseisten osa-alueiden luomaan kuormitukseen. Osa tätä työtä on tutkia eri vaihtoehtoja simuloinnille ja selvittää eri vaihtoehtojen soveltuvuus monimutkaisten järjestelmien mallintamiseen. Kerätyn tiedon pohjaltaluodaan järjestelmäntietovaraston kuormitusta kuvaava simulaatiomalli. Hyödyntämällä mallista saatua tietoa ja tuotantojärjestelmästä mitattua tietoa mallia kehitetään vastaamaan yhä lähemmin todellisen järjestelmän toimintaa. Mallista tarkastellaan esimerkiksi simuloitua järjestelmäkuormaa ja jonojen käyttäytymistä. Tuotantojärjestelmästä mitataan eri kuormalähteiden käytösmuutoksia esimerkiksi käyttäjämäärän ja kellonajan suhteessa. Tämän työn tulosten on tarkoitus toimia pohjana myöhemmin tehtävälle jatkotutkimukselle, jossa osa-alueiden parametrisointia tarkennetaan lisää, mallin kykyä kuvata todellista järjestelmää tehostetaanja mallin laajuutta kasvatetaan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Convective transport, both pure and combined with diffusion and reaction, can be observed in a wide range of physical and industrial applications, such as heat and mass transfer, crystal growth or biomechanics. The numerical approximation of this class of problemscan present substantial difficulties clue to regions of high gradients (steep fronts) of the solution, where generation of spurious oscillations or smearing should be precluded. This work is devoted to the development of an efficient numerical technique to deal with pure linear convection and convection-dominated problems in the frame-work of convection-diffusion-reaction systems. The particle transport method, developed in this study, is based on using rneshless numerical particles which carry out the solution along the characteristics defining the convective transport. The resolution of steep fronts of the solution is controlled by a special spacial adaptivity procedure. The serni-Lagrangian particle transport method uses an Eulerian fixed grid to represent the solution. In the case of convection-diffusion-reaction problems, the method is combined with diffusion and reaction solvers within an operator splitting approach. To transfer the solution from the particle set onto the grid, a fast monotone projection technique is designed. Our numerical results confirm that the method has a spacial accuracy of the second order and can be faster than typical grid-based methods of the same order; for pure linear convection problems the method demonstrates optimal linear complexity. The method works on structured and unstructured meshes, demonstrating a high-resolution property in the regions of steep fronts of the solution. Moreover, the particle transport method can be successfully used for the numerical simulation of the real-life problems in, for example, chemical engineering.