10 resultados para Signal analysis
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Diplomityössä kehitettiin menetelmiä teollisuusprosessien signaalien automaattiseen havainnointiin ja luotiin työkalu tulosten esittämiseen. Työn tarkoituksena on nopeuttaa ja helpottaa prosessin ongelmien ratkaisua luokittelemalla signaalit matemaattisten menetelmien avulla. Koska prosessin mittaussignaalit ovat pääasiassa stokastisia, eli niitä ei voida etukäteen ennustaa, käsitellään signaaleita tilastomatemaattisin keinoin. Työstä rajattiin mittaushistorian käyttö, joten värähtelyiden tunnistus toteutettiin taajuusanalyysin avulla. Korrelaation avulla löydetään samankaltaiset signaalit. Testeissä todettiin, että työssä kehitetyt havainnoinnit toimivat eri näytteenottotaajuuksilla ja työkalun suoritusnopeus todettiin hyväksi. Lopuksi esiteltiin todellinen teollisuusprosessin ongelma ja siihen mahdollisia ratkaisuja.
Resumo:
Tämän pro gradu –tutkielman tavoitteena oli selvittää, miten organisaatiossa voidaan hyödyntää heikkojen signaalien analysointia ja ennakointia osana strategista päätöksentekoa. Lisäksi tutkimuksessa pyrittiin luomaan ymmärrys tutkimuksen keskeisten käsitteiden määritelmien moninaisesta kentästä sekä yhdistämään heikkojen signaalien analysointi ennakointiin ja strategiseen päätöksentekoon. Tutkimusstrategiana oli tapaustutkimus, mikä sisältää laadullisen aineiston ja analyysin. Laadullinen aineisto kerättiin kohdeorganisaatiosta puolistrukturoidulla teemahaastattelulla ja analysoitiin teemoittelun avulla. Tutkimustulosten perusteella voidaan todeta, että heikkojen signaalien analysointi on yksi ennakoinnin menetelmistä. Heikkojen signaalien analysoinnilla ja ennakoinnilla voidaan tukea strategista päätöksentekoa ja jopa parantaa päätösten laatua ottamalla huomioon mahdolliset tulevat muutokset toimintaympäristössä. Tulosten perusteella heikkojen signaalien analysointia ja ennakointia tulisi toteuttaa systemaattisesti ja tiedostetusti organisaatiossa.
Resumo:
This work is devoted to the problem of reconstructing the basis weight structure at paper web with black{box techniques. The data that is analyzed comes from a real paper machine and is collected by an o®-line scanner. The principal mathematical tool used in this work is Autoregressive Moving Average (ARMA) modelling. When coupled with the Discrete Fourier Transform (DFT), it gives a very flexible and interesting tool for analyzing properties of the paper web. Both ARMA and DFT are independently used to represent the given signal in a simplified version of our algorithm, but the final goal is to combine the two together. Ljung-Box Q-statistic lack-of-fit test combined with the Root Mean Squared Error coefficient gives a tool to separate significant signals from noise.
Resumo:
Problems of the designing active magnet bearingcontrol are developed. The estimation controller are designed and applied to a rigid rotor. The mathematical model of the active magnet bearing controller is developed. This mathematical model is realized on a DSP. The results of this realization are analyzed. The conclusions about the digital signal processing are made.
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.
Resumo:
The purpose of this study is to examine macroeconomic indicators‟ and technical analysis‟ ability to signal market crashes. Indicators examined were Yield Spread, The Purchasing Managers Index and the Consumer Confidence Index. Technical Analysis indicators were moving average, Moving Average Convergence-Divergence and Relative Strength Index. We studied if commonly used macroeconomic indicators can be used as a warning system for a stock market crashes as well. The hypothesis is that the signals of recession can be used as signals of stock market crash and that way a basis for a hedging strategy. The data is collected from the U.S. markets from the years 1983-2010. Empirical studies show that macroeconomic indicators have been able to explain the future GDP development in the U.S. in research period and they were statistically significant. A hedging strategy that combined the signals of yield spread and Consumer Confidence Index gave most useful results as a basis of a hedging strategy in selected time period. It was able to outperform buy-and-hold strategy as well as all of the technical indicator based hedging strategies.
Resumo:
This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.
Resumo:
Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.
Resumo:
The most common reason for a low-voltage induction motor breakdown is a bearing failure. Along with the increasing popularity of modern frequency converters, bearing failures have become the most important motor fault type. Conditions in which bearing currents are likely to occur are generated as a side effect of fast du/dt switching transients. Once present, different types of bearing currents can accelerate the mechanical wear of bearings by causing deformation of metal parts in the bearing and degradation of the lubricating oil properties.The bearing current phenomena are well known, and several bearing current measurement and mitigation methods have been proposed. Nevertheless, in order to develop more feasible methods to measure and mitigate bearing currents, better knowledge of the phenomena is required. When mechanical wear is caused by bearing currents, the resulting aging impact has to be monitored and dealt with. Moreover, because of the stepwise aging mechanism, periodically executed condition monitoring measurements have been found ineffective. Thus, there is a need for feasible bearing current measurement methods that can be applied in parallel with the normal operation of series production drive systems. In order to reach the objectives of feasibility and applicability, nonintrusive measurement methods are preferred. In this doctoral dissertation, the characteristics and conditions of bearings that are related to the occurrence of different kinds of bearing currents are studied. Further, the study introduces some nonintrusive radio-frequency-signal-based approaches to detect and measure parameters that are associated with the accelerated bearing wear caused by bearing currents.