6 resultados para Sieve
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Diplomityö tehtiin osana Vapon toteuttamaa monivuotista pelletin kehitysohjelmaa. Kehitysohjelma koostuu useista pienemmistä osaprojekteista, jotka täydentävät toinen toisiaan. Pellettien raaka-ainepohjan laajentaminen on eräs näistä osaprojekteista. Tutkimustyön tavoitteena oli selvittää erilaisten potentiaalisten bioraaka-aineiden soveltuvuutta pelletointiin joko sellaisenaan tai erilaisina seoksina. Raaka-aineiden pelletoitavuutta tutkittiin kenttäolosuhteissa mobiilipelletointilaitoksella. Laitoksen pääkomponentit muodostivat Kahl C 38–780 tasomatriisipuristin, jäähdytin ja täryseula. Pelletointikokeissa tutkittuja raaka-aineita olivat mäntysahanpuru, männynkuori, harvennusranka, haapa, koivu, jyrsinturve ja ruokohelpi. Raaka-aineiden irtotiheys käyttökosteudessa vaihteli välillä 73–244 kg/m3 ja keskimääräinen kosteuspitoisuus 6,5–15 %. Useissa tapauksissa säkitettyjä raaka-aineita säkkikostutettiin haluttuun kosteuspitoisuuteen ennen pelletointia. Säkkikostutettujen raaka-aineiden kosteuspitoisuudet vaihtelivat tällöin välillä 12–14 m- %. Valtaosa tutkituista raaka-aineista ja niiden seoksista pystyttiin pelletoimaan puristimen matriisilla 8/40 mm, jossa puristuskanavan halkaisija oli 8 mm ja kanavan suoran osan pituus 40 mm. Vaikeuksia tuotti ainoastaan pelkän koivupurun ja ruokohelven pelletointi. Käytetty matriisi oli kanavapituudeltaan liian pitkä koivupurun pelletointiin nostaen puristusvastuksen suureksi. Ruokohelven pelletoinnin vaikeudet johtuivat pääasiassa pelletointiin liian karkeasta raaka-aineesta. Myös matriisia 8/55 mm kokeiltiin, mutta se osoittautui liian ”tiukaksi” valtaosalle puuraaka-aineista. Ainoastaan jyrsinturpeen pelletointi onnistui tällä matriisilla. Männynkuoren pelletointia ei matriisilla 8/55 mm yritetty. Kenttäkokeissa valmistetuista pelleteistä määritettiin erilaisia ominaisuuksia, kuten keskipituus, kosteuspitoisuus, irtotiheys, hienoaineksen määrä ja käsittelykestävyys. Lujuus mitattiin sekä Ligno-testillä että CEN-rummutuslujuuden määrityksellä. Lisäksi pelleteille määritettiin alkuaineanalyysi, tuhkapitoisuus ja lämpöarvo ENAS Oy:n laboratoriossa Jyväskylässä. Ligno-testauksessa parhaimman luokan pelletin tulee yltää arvoon 97,5 %. Pelletoitaessa raaka-aineita ja niiden seoksia tasomatriisikoneella sopivalla matriisilla yllettiin usein näihin tai parempiin tuloksiin. Puumateriaaleilla raaka-aineen optimaalinen lähtökosteus oli välillä 12–14 m- % ja turpeella sekä ruokohelvellä 14–16 m- %. Pelletointi onnistui tällöin vaivattomasti, kunhan sopivat puristimen ajoparametrit oli löydetty. Pellettiä alkoi muodostua matriisin puristuskanavien lämpötilan kohotessa noin 70 ºC. Pellettien lämpötila stabiilitilanteessa heti pelletoinnin jälkeen oli useissa tapauksissa 80–90 ºC. Pelletoinnin aikainen tehontarve vaihteli välillä 90–150 kWh/t, ollen suurimmillaan irtotiheydeltään keveillä materiaaleilla. Raaka-aineen suuri partikkelikoko kasvatti puristimen tehontarvetta. Tämä havaittiin selvästi lisättäessä karkeaa ruokohelpisilppua eri raaka-aineiden joukkoon. Kestävyydeltään erinomaisia pellettejä saatiin, kun raaka-aineena oli jyrsinturve, harvennusranka tai mäntypuru. Varsinkin jyrsinturpeen ja harvennusrangan seoksesta valmistetut pelletit osoittautuivat erittäin kestäviksi. Myös jyrsinturpeen ja ruokohelven sekä mäntypurun ja ruokohelven seoksien pelleteille määritettiin hyviä kestävyysarvoja. Männynkuoresta valmistetut pelletit jäivät Ligno-testauksessa kestävyydeltään alle 97,5 % rajan. Pääsyynä tähän oli kuoren pelletointiin käytetyn matriisin 8/40 mm liian lyhyet puristuskanavat.
Resumo:
The consumption of manganese is increasing, but huge amounts of manganese still end up in waste in hydrometallurgical processes. The recovery of manganese from multi-metal solutions at low concentrations may not be economical. In addition, poor iron control typically prevents the production of high purity manganese. Separation of iron from manganese can be done with chemical precipitation or solvent extraction methods. Combined carbonate precipitation with air oxidation is a feasible method to separate iron and manganese due to the fast kinetics, good controllability and economical reagents. In addition the leaching of manganese carbonate is easier and less acid consuming than that of hydroxide or sulfide precipitates. Selective iron removal with great efficiency from MnSO4 solution is achieved by combined oxygen or air oxidation and CaCO3 precipitation at pH > 5.8 and at a redox potential of > 200 mV. In order to avoid gypsum formation, soda ash should be used instead of limestone. In such case, however, extra attention needs to be paid on the reagents mole ratios in order to avoid manganese coprecipitation. After iron removal, pure MnSO4 solution was obtained by solvent extraction using organophosphorus reagents, di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4- trimethylpentyl)phosphinic acid (CYANEX 272). The Mn/Ca and Mn/Mg selectivities can be increased by decreasing the temperature from the commonly used temperatures (40 –60oC) to 5oC. The extraction order of D2EHPA (Ca before Mn) at low temperature remains unchanged but the lowering of temperature causes an increase in viscosity and slower phase separation. Of these regents, CYANEX 272 is selective for Mn over Ca and, therefore, it would be the better choice if there is Ca present in solution. A three-stage Mn extraction followed by a two-stage scrubbing and two-stage sulfuric acid stripping is an effective method of producing a very pure MnSO4 intermediate solution for further processing. From the intermediate MnSO4 some special Mn- products for ion exchange applications were synthesized and studied. Three types of octahedrally coordinated manganese oxide materials as an alternative final product for manganese were chosen for synthesis: layer structured Nabirnessite, tunnel structured Mg-todorokite and K-kryptomelane. As an alternative source of pure MnSO4 intermediate, kryptomelane was synthesized by using a synthetic hydrometallurgical tailings. The results show that the studied OMS materials adsorb selectively Cu, Ni, Cd and K in the presence of Ca and Mg. It was also found that the exchange rates were reasonably high due to the small particle dimensions. Materials are stable in the studied conditions and their maximum Cu uptake capacity was 1.3 mmol/g. Competitive uptake of metals and acid was studied using equilibrium, batch kinetic and fixed-bed measurements. The experimental data was correlated with a dynamic model, which also accounts for the dissolution of the framework manganese. Manganese oxide micro-crystals were also bound onto silica to prepare a composite material having a particle size large enough to be used in column separation experiments. The MnOx/SiO2 ratio was found to affect significantly the properties of the composite. The higher the ratio, the lower is the specific surface area, the pore volume and the pore size. On the other hand, higher amount of silica binder gives composites better mechanical properties. Birnesite and todorokite can be aggregated successfully with colloidal silica at pH 4 and with MnO2/SiO2 weight ratio of 0.7. The best gelation and drying temperature was 110oC and sufficiently strong composites were obtained by additional heat-treatment at 250oC for 2 h. The results show that silica–supported MnO2 materials can be utilized to separate copper from nickel and cadmium. The behavior of the composites can be explained reasonably well with the presented model and the parameters estimated from the data of the unsupported oxides. The metal uptake capacities of the prepared materials were quite small. For example, the final copper loading was 0.14 mmol/gMnO2. According to the results the special MnO2 materials are potential for a specific environmental application to uptake harmful metal ions.
Resumo:
Tässä työssä tutkittiin pohjaöljy-yksikössä sijaitsevan tislauskolonnin pohjaosan likaantumista ja likaantumisen vähentämistä kolonnin sisärakenteita muuttamalla. Tislauskolonnin likaantuminen aiheutuu raskaista molekyyleistä, asfalteeneistä, joita pohjaöljy sisältää. Pohjaöljyä krakattaessa kevyemmiksi tisleiksi asfalteenien liukoisuus pienenee. Asfalteenimolekyylit alkavat lopulta yhdistyä, minkä seurauksena muodostuu asfalteenejä sisältävä hiilimäinen mesofaasi. Radikaalireaktioiden kautta mesofaasista muodostuu koksia. Mesofaasi tarttuu tiukasti tislauskolonnin sisärakenteiden pinnoille aiheuttaen koksaantumista. Koksaantumisen seurauksena strippausvälipohjina käytettävien suihkupohjien tislausteho huononee. Koksaantumisen johdosta suihkupohjien ja kolonnin pohjaosan tukkeentumisen riski kasvaa. Suihkupohjien likaantumista pyritään vähentämään muuttamalla suihkupohjat sileiksi välipohjiksi ilman patolevyjä ja reikiä. Tällä tavoin saadaan neste virtaamaan vapaasti välipohjalta toiselle, mikä vähentää mesofaasin ja koksin muodostumista. Likaantumista voitaisiin myös vähentää tuomalla jäähdytyskiertopalautus välipohjille, minkä avulla neste saadaan jäähtymään nopeammin alle lämpökrakkautumislämpötilan, mikä vähentää koksaantumista. Kolonnin pohjaosassa sijaitsevan pohjaseulan likaantumista voitaisiin vähentää harventamalla pohjaseulan tankoja, mikä vähentää koksin tarttumapinta-alaa. Likaantumisen online-seurantaa saadaan parannettua lisäämällä pintalämpötilamittauksia järjestelmällisesti samoille korkeuksille kolonnin vastakkaisille puolille.
Resumo:
Tämän kandidaatintyön tavoitteena oli selvittää mahdollisuuksia 14C:n kemiallisten muotojen eriyttämiseen käyttäen Loviisan voimalaitoksella olemassa olevaa näytteenkeräyslaitteistoa. Lisäksi tarkoituksena oli selvittää parhaiten tähän käyttötarkoitukseen soveltuva zeoliittityyppiä tyypeistä 4A, 5A ja 13X. Työn kirjallisessa osassa käsitellään ydinvoimalaitoksen C14-päästöjä keskittyen pääosin Loviisan VVER-laitokseen. Adsorption osalta esitellään kaupallisesti käytettyjä adsorptiomateriaaleja ja paneudutaan adsorptioon fysikaalisena ja kemiallisena ilmiönä. Lisäksi esitellään kahden desorptiomenetelmän perusperiaatteet. Kirjallisen osan lopussa kootaan tutkimukseen vaikuttavia tekijöitä ja esitellään aiemmin käytössä ollut näytteenkeräyslaitteisto. Kokeellisessa osassa esitellään työssä käytetyt laitteistot. Lisäksi on kuvattu mittausten suoritus nestetuikelaskurilla. Tämän jälkeen työssä esitellään mittaustuloksien käsittely ja näin saadut tulokset.
Resumo:
Litiumioniakkujen kehityksen myötä litiumin tarve ja kysyntä ovat kasvaneet viime vuodet tasaisesti noin 10 % vuosivauhdilla. Kasvun on myös ennustettu jatkuvan samanlaisena tulevaisuudessa, jonka takia erilaiset litiumin erotusprosessit ovat nousseet tutkimuksen kohteeksi. Tärkeimmät litiumlähteet sijaitsevat suola-aavikoilla ja -järvillä, joihin litiumia on kerääntynyt suuria määriä maanpinnan läheisyyteen. Litiumia erotetaan suolatasangoilla aikaa vievissä haihdutus- ja saostusvaiheissa. Suolaliuokset sisältävät litiumin lisäksi muita metalleja, kuten magnesiumia, kalsiumia ja natriumia, joista etenkin magnesium häiritsee litiumin erotusta. Aikaisemmissa tutkimuksissa ei ole löydetty litiumille riittävän selektiivistä ioninvaihtohartsia. Tehdyissä tutkimuksissa muut metallit on usein erotettu selektiivisesti ennen litiumia ja litium on erotettu lopuksi. Litiumin erotusta voitaisiin parantaa, mikäli se onnistuisi selektiivisesti suoraan suolaliuoksesta. Tässä työssä tutkittiin litiumin selektiivistä erotusta magnesium- ja kalsiumpitoisesta väkevästä kloridiliuoksesta ioninvaihtohartseilla sekä molekyyliseulalla. Käytetyt neljä ioninvaihtohartsia olivat kaupallisia Puroliten hartseja: MN200, S940, CT151 ja A170. Molekyyliseula oli Sigman huokoskoon 4 Å zeoliittia. Kromatografisilla kolonnikokeilla saadut näytteet analysoitiin ICP-AES:lla. Tulosten perusteella ei yksikään tutkituista hartseista ja molekyyliseulasta ollut selektiivinen litiumille.