10 resultados para Session laws.
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Puhe
Resumo:
[Abstract]
Resumo:
Mitä on läsnäolo? Tämä työ määrittelee läsnäolon tietyn henkilön, laitteen tai palvelun halukkuudeksi kommunikoida. Nykyään on olemassa lukuisia läsnäolotietoa levittäviä sovelluksia, joista jokainen käyttää erilaista protokollaa tehtävän suorittamiseen. Vasta viime aikoina sovellusten kehittäjät ovat huomanneet tarpeen yhdelle sovellukselle, joka kykenee tukemaan lukuisia läsnäoloprotokollia. Session Initiation Protocol (SIP) voi levittää läsnäolotietoa muiden ominaisuuksiensa lisäksi. Kun muita protokollia käytetään vain reaaliaikaiseen viestintään ja läsnäolotiedon lähetykseen, SIP pystyy moniin muihinkin asioihin. Se on alunperin suunniteltu aloittamaan, muuttamaan ja lopettamaan osapuolien välisiä multimediaistuntoja. Arkkitehtuurin toteutus käyttää kahta Symbian –käyttöjärjestelmän perusominaisuutta: asiakas-palvelin rakennetta ja kontaktitietokantaa. Asiakaspalvelin rakenne erottaa asiakkaan protokollasta tarjoten perustan laajennettavalle usean protokollan arkkitehtuurille ja kontaktitietokanta toimii läsnäolotietojen varastona. Työn tuloksena on Symbianin käyttöjärjestelmässä toimiva läsnäoloasiakas.
Resumo:
Conservation laws in physics are numerical invariants of the dynamics of a system. In cellular automata (CA), a similar concept has already been defined and studied. To each local pattern of cell states a real value is associated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.The overall “energy” of a configuration is simply the sum of the energy of the local patterns appearing on different positions in the configuration. We have a conservation law for that energy, if the total energy of each configuration remains constant during the evolution of the CA. For a given conservation law, it is desirable to find microscopic explanations for the dynamics of the conserved energy in terms of flows of energy from one region toward another. Often, it happens that the energy values are from non-negative integers, and are interpreted as the number of “particles” distributed on a configuration. In such cases, it is conjectured that one can always provide a microscopic explanation for the conservation laws by prescribing rules for the local movement of the particles. The onedimensional case has already been solved by Fuk´s and Pivato. We extend this to two-dimensional cellular automata with radius-0,5 neighborhood on the square lattice. We then consider conservation laws in which the energy values are chosen from a commutative group or semigroup. In this case, the class of all conservation laws for a CA form a partially ordered hierarchy. We study the structure of this hierarchy and prove some basic facts about it. Although the local properties of this hierarchy (at least in the group-valued case) are tractable, its global properties turn out to be algorithmically inaccessible. In particular, we prove that it is undecidable whether this hierarchy is trivial (i.e., if the CA has any non-trivial conservation law at all) or unbounded. We point out some interconnections between the structure of this hierarchy and the dynamical properties of the CA. We show that positively expansive CA do not have non-trivial conservation laws. We also investigate a curious relationship between conservation laws and invariant Gibbs measures in reversible and surjective CA. Gibbs measures are known to coincide with the equilibrium states of a lattice system defined in terms of a Hamiltonian. For reversible cellular automata, each conserved quantity may play the role of a Hamiltonian, and provides a Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity) that is invariant. Conversely, every invariant Gibbs measure provides a conservation law for the CA. For surjective CA, the former statement also follows (in a slightly different form) from the variational characterization of the Gibbs measures. For one-dimensional surjective CA, we show that each invariant Gibbs measure provides a conservation law. We also prove that surjective CA almost surely preserve the average information content per cell with respect to any probability measure.
Resumo:
Efficient problem solving in cellular networks is important when enhancing the network performance and liability. Analysis of calls and packet switched sessions in protocol level between the network elements is an important part of this process. They can provide very detailed information about error situations which otherwise would be difficult to recognise. In this thesis we seek solutions for monitoring GPRS/EDGE sessions in two specific interfaces simultaneously in such manner that all information important to the users will be provided in easily understandable form. This thesis focuses on Abis and AGPRS interfaces of GSM radio network and introduces a solution for managing the correlation between these interfaces by using signalling messages and common parameters as linking elements. ~: Finally this thesis presents an implementation of GPRS/EDGE session monitoring application for Abis and AGPRS interfaces and evaluates its benefits to the end users. Application is implemented as a part of Windows based 3G/GSM network analyser.