1 resultado para Semantic metrics
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Filtro por publicador
- JISC Information Environment Repository (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (9)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Stockholm University; Sweden) (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (10)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (72)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (47)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (20)
- Cambridge University Engineering Department Publications Database (41)
- CentAUR: Central Archive University of Reading - UK (72)
- Central European University - Research Support Scheme (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (13)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (14)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (8)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (9)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (9)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Open University Netherlands (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (45)
- Queensland University of Technology - ePrints Archive (136)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (2)
- Scielo Uruguai (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (14)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (71)
- Universidade de Lisboa - Repositório Aberto (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (32)
- University of Southampton, United Kingdom (23)
- University of Washington (6)
- WestminsterResearch - UK (6)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In this thesis, we propose to infer pixel-level labelling in video by utilising only object category information, exploiting the intrinsic structure of video data. Our motivation is the observation that image-level labels are much more easily to be acquired than pixel-level labels, and it is natural to find a link between the image level recognition and pixel level classification in video data, which would transfer learned recognition models from one domain to the other one. To this end, this thesis proposes two domain adaptation approaches to adapt the deep convolutional neural network (CNN) image recognition model trained from labelled image data to the target domain exploiting both semantic evidence learned from CNN, and the intrinsic structures of unlabelled video data. Our proposed approaches explicitly model and compensate for the domain adaptation from the source domain to the target domain which in turn underpins a robust semantic object segmentation method for natural videos. We demonstrate the superior performance of our methods by presenting extensive evaluations on challenging datasets comparing with the state-of-the-art methods.